These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 24894873)
1. Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Igarashi K; Uchihashi T; Uchiyama T; Sugimoto H; Wada M; Suzuki K; Sakuda S; Ando T; Watanabe T; Samejima M Nat Commun; 2014 Jun; 5():3975. PubMed ID: 24894873 [TBL] [Abstract][Full Text] [Related]
2. Aromatic-Mediated Carbohydrate Recognition in Processive Serratia marcescens Chitinases. Jana S; Hamre AG; Wildberger P; Holen MM; Eijsink VG; Beckham GT; Sørlie M; Payne CM J Phys Chem B; 2016 Feb; 120(7):1236-49. PubMed ID: 26824449 [TBL] [Abstract][Full Text] [Related]
3. Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. Horn SJ; Sørbotten A; Synstad B; Sikorski P; Sørlie M; Vårum KM; Eijsink VG FEBS J; 2006 Feb; 273(3):491-503. PubMed ID: 16420473 [TBL] [Abstract][Full Text] [Related]
4. The chitinolytic machinery of Serratia marcescens--a model system for enzymatic degradation of recalcitrant polysaccharides. Vaaje-Kolstad G; Horn SJ; Sørlie M; Eijsink VG FEBS J; 2013 Jul; 280(13):3028-49. PubMed ID: 23398882 [TBL] [Abstract][Full Text] [Related]
5. Treatment of recalcitrant crystalline polysaccharides with lytic polysaccharide monooxygenase relieves the need for glycoside hydrolase processivity. Hamre AG; Strømnes AS; Gustavsen D; Vaaje-Kolstad G; Eijsink VGH; Sørlie M Carbohydr Res; 2019 Feb; 473():66-71. PubMed ID: 30640029 [TBL] [Abstract][Full Text] [Related]
6. Enzyme processivity changes with the extent of recalcitrant polysaccharide degradation. Hamre AG; Lorentzen SB; Väljamäe P; Sørlie M FEBS Lett; 2014 Dec; 588(24):4620-4. PubMed ID: 25447535 [TBL] [Abstract][Full Text] [Related]
7. Multiple chitinases of an endophytic Serratia proteamaculans 568 generate chitin oligomers. Purushotham P; Sarma PV; Podile AR Bioresour Technol; 2012 May; 112():261-9. PubMed ID: 22406064 [TBL] [Abstract][Full Text] [Related]
8. Activation of enzymatic chitin degradation by a lytic polysaccharide monooxygenase. Hamre AG; Eide KB; Wold HH; Sørlie M Carbohydr Res; 2015 Apr; 407():166-9. PubMed ID: 25812992 [TBL] [Abstract][Full Text] [Related]
9. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases. Kurašin M; Kuusk S; Kuusk P; Sørlie M; Väljamäe P J Biol Chem; 2015 Nov; 290(48):29074-85. PubMed ID: 26468285 [TBL] [Abstract][Full Text] [Related]
10. Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Hult EL; Katouno F; Uchiyama T; Watanabe T; Sugiyama J Biochem J; 2005 Jun; 388(Pt 3):851-6. PubMed ID: 15717865 [TBL] [Abstract][Full Text] [Related]
11. Potentiation of the synergistic activities of chitinases ChiA, ChiB and ChiC from Serratia marcescens CFFSUR-B2 by chitobiase (Chb) and chitin binding protein (CBP). Gutiérrez-Román MI; Dunn MF; Tinoco-Valencia R; Holguín-Meléndez F; Huerta-Palacios G; Guillén-Navarro K World J Microbiol Biotechnol; 2014 Jan; 30(1):33-42. PubMed ID: 23824666 [TBL] [Abstract][Full Text] [Related]
12. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. Zakariassen H; Aam BB; Horn SJ; Vårum KM; Sørlie M; Eijsink VG J Biol Chem; 2009 Apr; 284(16):10610-7. PubMed ID: 19244232 [TBL] [Abstract][Full Text] [Related]
13. Thermodynamic Relationships with Processivity in Serratia marcescens Family 18 Chitinases. Hamre AG; Jana S; Holen MM; Mathiesen G; Väljamäe P; Payne CM; Sørlie M J Phys Chem B; 2015 Jul; 119(30):9601-13. PubMed ID: 26154587 [TBL] [Abstract][Full Text] [Related]
14. The directionality of processive enzymes acting on recalcitrant polysaccharides is reflected in the kinetic signatures of oligomer degradation. Hamre AG; Schaupp D; Eijsink VG; Sørlie M FEBS Lett; 2015 Jul; 589(15):1807-12. PubMed ID: 26028500 [TBL] [Abstract][Full Text] [Related]
15. Carbohydrate-binding modules of ChiB and ChiC promote the chitinolytic system of Serratia marcescens BWL1001. Liu J; Xu Q; Wu Y; Sun D; Zhu J; Liu C; Liu W Enzyme Microb Technol; 2023 Jan; 162():110118. PubMed ID: 36081184 [TBL] [Abstract][Full Text] [Related]
16. Substrate positioning in chitinase A, a processive chito-biohydrolase from Serratia marcescens. Norberg AL; Dybvik AI; Zakariassen H; Mormann M; Peter-Katalinić J; Eijsink VG; Sørlie M FEBS Lett; 2011 Jul; 585(14):2339-44. PubMed ID: 21683074 [TBL] [Abstract][Full Text] [Related]
17. Serratia marcescens chitinases with tunnel-shaped substrate-binding grooves show endo activity and different degrees of processivity during enzymatic hydrolysis of chitosan. Sikorski P; Sørbotten A; Horn SJ; Eijsink VG; Vårum KM Biochemistry; 2006 Aug; 45(31):9566-74. PubMed ID: 16878991 [TBL] [Abstract][Full Text] [Related]
18. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes. Kuusk S; Sørlie M; Väljamäe P J Biol Chem; 2015 May; 290(18):11678-91. PubMed ID: 25767120 [TBL] [Abstract][Full Text] [Related]
19. Processivity, Substrate Positioning, and Binding: The Role of Polar Residues in a Family 18 Glycoside Hydrolase. Hamre AG; Jana S; Reppert NK; Payne CM; Sørlie M Biochemistry; 2015 Dec; 54(49):7292-306. PubMed ID: 26503416 [TBL] [Abstract][Full Text] [Related]
20. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Suzuki K; Sugawara N; Suzuki M; Uchiyama T; Katouno F; Nikaidou N; Watanabe T Biosci Biotechnol Biochem; 2002 May; 66(5):1075-83. PubMed ID: 12092818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]