BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 24894958)

  • 21. Catalytic Mechanism of the Hotdog-Fold Thioesterase PA1618 Revealed by X-ray Structure Determination of a Substrate-Bound Oxygen Ester Analogue Complex.
    Latham JA; Ji T; Matthews K; Mariano PS; Allen KN; Dunaway-Mariano D
    Chembiochem; 2017 Oct; 18(19):1935-1943. PubMed ID: 28741300
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of modification of the length and flexibility of the acyl carrier protein-thioesterase interdomain linker on functionality of the animal fatty acid synthase.
    Joshi AK; Witkowski A; Berman HA; Zhang L; Smith S
    Biochemistry; 2005 Mar; 44(10):4100-7. PubMed ID: 15751987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of PTE2, a human peroxisomal long-chain acyl-CoA thioesterase.
    Jones JM; Gould SJ
    Biochem Biophys Res Commun; 2000 Aug; 275(1):233-40. PubMed ID: 10944470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural basis for disulphide-CoA inhibition of a butyryl-CoA hexameric thioesterase.
    Khandokar Y; Srivastava P; Raidal S; Sarker S; Forwood JK
    J Struct Biol; 2020 Apr; 210(1):107477. PubMed ID: 32027968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylloquinone (vitamin K(1) ) biosynthesis in plants: two peroxisomal thioesterases of Lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-CoA.
    Widhalm JR; Ducluzeau AL; Buller NE; Elowsky CG; Olsen LJ; Basset GJ
    Plant J; 2012 Jul; 71(2):205-15. PubMed ID: 22372525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation of structure and function in the human hotdog-fold enzyme hTHEM4.
    Zhao H; Lim K; Choudry A; Latham JA; Pathak MC; Dominguez D; Luo L; Herzberg O; Dunaway-Mariano D
    Biochemistry; 2012 Aug; 51(33):6490-2. PubMed ID: 22871024
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterisation of four hotdog-fold thioesterases for their implementation in a novel organic acid production system.
    Hickman TWP; Baud D; Benhamou L; Hailes HC; Ward JM
    Appl Microbiol Biotechnol; 2020 May; 104(10):4397-4406. PubMed ID: 32193574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and activity of the Pseudomonas aeruginosa hotdog-fold thioesterases PA5202 and PA2801.
    Gonzalez CF; Tchigvintsev A; Brown G; Flick R; Evdokimova E; Xu X; Osipiuk J; Cuff ME; Lynch S; Joachimiak A; Savchenko A; Yakunin AF
    Biochem J; 2012 Jun; 444(3):445-55. PubMed ID: 22439787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional convergence of structurally distinct thioesterases from cyanobacteria and plants involved in phylloquinone biosynthesis.
    Furt F; Allen WJ; Widhalm JR; Madzelan P; Rizzo RC; Basset G; Wilson MA
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):1876-88. PubMed ID: 24100308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Benzoyl-coenzyme A thioesterase of Azoarcus evansii: properties and function.
    Ismail W
    Arch Microbiol; 2008 Oct; 190(4):451-60. PubMed ID: 18542924
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and catalysis in the Escherichia coli hotdog-fold thioesterase paralogs YdiI and YbdB.
    Wu R; Latham JA; Chen D; Farelli J; Zhao H; Matthews K; Allen KN; Dunaway-Mariano D
    Biochemistry; 2014 Jul; 53(29):4788-805. PubMed ID: 25010423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification and characterization of Escherichia coli thioesterase III that functions in fatty acid beta-oxidation.
    Nie L; Ren Y; Schulz H
    Biochemistry; 2008 Jul; 47(29):7744-51. PubMed ID: 18576672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escherichia coli YigI is a Conserved Gammaproteobacterial Acyl-CoA Thioesterase Permitting Metabolism of Unusual Fatty Acid Substrates.
    Schmidt M; Proctor T; Diao R; Freddolino PL
    J Bacteriol; 2022 Aug; 204(8):e0001422. PubMed ID: 35876515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and functional analysis of RifR, the type II thioesterase from the rifamycin biosynthetic pathway.
    Claxton HB; Akey DL; Silver MK; Admiraal SJ; Smith JL
    J Biol Chem; 2009 Feb; 284(8):5021-9. PubMed ID: 19103602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural Insight into Acyl-ACP Thioesterase toward Substrate Specificity Design.
    Feng Y; Wang Y; Liu J; Liu Y; Cao X; Xue S
    ACS Chem Biol; 2017 Nov; 12(11):2830-2836. PubMed ID: 28991437
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation and characterization of novel long-chain acyl-CoA thioesterase/carboxylesterase isoenzymes from Candida rugosa.
    Diczfalusy MA; Alexson SE
    Arch Biochem Biophys; 1996 Oct; 334(1):104-12. PubMed ID: 8837745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The catalysis of the 1,1-proton transfer by alpha-methyl-acyl-CoA racemase is coupled to a movement of the fatty acyl moiety over a hydrophobic, methionine-rich surface.
    Bhaumik P; Schmitz W; Hassinen A; Hiltunen JK; Conzelmann E; Wierenga RK
    J Mol Biol; 2007 Apr; 367(4):1145-61. PubMed ID: 17320106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The expression of cytosolic and mitochondrial type II acyl-CoA thioesterases is upregulated in the porcine corpus luteum during pregnancy.
    Boström M; Alexson SE; Lundgren B; Nelson BD; DePierre JW
    Prostaglandins Leukot Essent Fatty Acids; 2004 Nov; 71(5):319-27. PubMed ID: 15380819
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolution of function in the crotonase superfamily: the stereochemical course of the reaction catalyzed by 2-ketocyclohexanecarboxyl-CoA hydrolase.
    Eberhard ED; Gerlt JA
    J Am Chem Soc; 2004 Jun; 126(23):7188-9. PubMed ID: 15186151
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes.
    Hunt MC; Tillander V; Alexson SE
    Biochimie; 2014 Mar; 98():45-55. PubMed ID: 24389458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.