BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 24895052)

  • 1. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis.
    Antfolk M; Muller PB; Augustsson P; Bruus H; Laurell T
    Lab Chip; 2014 Aug; 14(15):2791-9. PubMed ID: 24895052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional focusing of particles using negative dielectrophoretic force in a microfluidic chip with insulating microstructures and dual planar microelectrodes.
    Jen CP; Weng CH; Huang CT
    Electrophoresis; 2011 Sep; 32(18):2428-35. PubMed ID: 21874653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seed particle-enabled acoustic trapping of bacteria and nanoparticles in continuous flow systems.
    Hammarström B; Laurell T; Nilsson J
    Lab Chip; 2012 Nov; 12(21):4296-304. PubMed ID: 22955667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis.
    Gautam GP; Gurung R; Fencl FA; Piyasena ME
    Anal Bioanal Chem; 2018 Oct; 410(25):6561-6571. PubMed ID: 30046870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces.
    Muller PB; Barnkob R; Jensen MJ; Bruus H
    Lab Chip; 2012 Nov; 12(22):4617-27. PubMed ID: 23010952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient acoustic focusing of sub-micron particles for separation of bacteria from blood lysate.
    Van Assche D; Reithuber E; Qiu W; Laurell T; Henriques-Normark B; Mellroth P; Ohlsson P; Augustsson P
    Sci Rep; 2020 Feb; 10(1):3670. PubMed ID: 32111864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of acoustic streaming patterns around oscillating sharp edges.
    Nama N; Huang PH; Huang TJ; Costanzo F
    Lab Chip; 2014 Aug; 14(15):2824-36. PubMed ID: 24903475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focusing of sub-micrometer particles in microfluidic devices.
    Zhang T; Hong ZY; Tang SY; Li W; Inglis DW; Hosokawa Y; Yalikun Y; Li M
    Lab Chip; 2020 Jan; 20(1):35-53. PubMed ID: 31720655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlled Lateral Positioning of Microparticles Inside Droplets Using Acoustophoresis.
    Fornell A; Nilsson J; Jonsson L; Periyannan Rajeswari PK; Joensson HN; Tenje M
    Anal Chem; 2015 Oct; 87(20):10521-6. PubMed ID: 26422760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-hundredfold volume concentration of dilute cell and particle suspensions using chip integrated multistage acoustophoresis.
    Nordin M; Laurell T
    Lab Chip; 2012 Nov; 12(22):4610-6. PubMed ID: 22918416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasonic alignment of bio-functionalized magnetic beads and live cells in PDMS micro-fluidic channel.
    Islam AT; Siddique AH; Ramulu TS; Reddy V; Eu YJ; Cho SH; Kim C
    Biomed Microdevices; 2012 Dec; 14(6):1077-84. PubMed ID: 22983792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW).
    Shi J; Huang H; Stratton Z; Huang Y; Huang TJ
    Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical study of the effect of channel aspect ratio on particle focusing in acoustophoretic devices.
    Spigarelli L; Vasile NS; Pirri CF; Canavese G
    Sci Rep; 2020 Nov; 10(1):19447. PubMed ID: 33173108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria Delay the Jamming of Particles at Microchannel Bottlenecks.
    Sendekie ZB; Gaveau A; Lammertink RG; Bacchin P
    Sci Rep; 2016 Aug; 6():31471. PubMed ID: 27510611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct 2D measurement of time-averaged forces and pressure amplitudes in acoustophoretic devices using optical trapping.
    Lakämper S; Lamprecht A; Schaap IA; Dual J
    Lab Chip; 2015 Jan; 15(1):290-300. PubMed ID: 25370872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous manipulation and separation of particles using combined obstacle- and curvature-induced direct current dielectrophoresis.
    Li M; Li S; Li W; Wen W; Alici G
    Electrophoresis; 2013 Apr; 34(7):952-60. PubMed ID: 23436345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the automation of micron-sized particle handling by use of acoustic manipulation assisted by microfluidics.
    Oberti S; Neild A; Möller D; Dual J
    Ultrasonics; 2008 Nov; 48(6-7):529-36. PubMed ID: 18649908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.