These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24895083)

  • 1. Wideband optical detector of ultrasound for medical imaging applications.
    Rosenthal A; Kellnberger S; Omar M; Razansky D; Ntziachristos V
    J Vis Exp; 2014 May; (87):. PubMed ID: 24895083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interferometric optical fiber sensor for optoacoustic endomicroscopy.
    Ülgen O; Shnaiderman R; Zakian C; Ntziachristos V
    J Biophotonics; 2021 Jul; 14(7):e202000501. PubMed ID: 33773073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-optical optoacoustic microscope based on wideband pulse interferometry.
    Wissmeyer G; Soliman D; Shnaiderman R; Rosenthal A; Ntziachristos V
    Opt Lett; 2016 May; 41(9):1953-6. PubMed ID: 27128047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating.
    Rosenthal A; Razansky D; Ntziachristos V
    Opt Lett; 2011 May; 36(10):1833-5. PubMed ID: 21593906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wideband optical sensing using pulse interferometry.
    Rosenthal A; Razansky D; Ntziachristos V
    Opt Express; 2012 Aug; 20(17):19016-29. PubMed ID: 23038542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interferometric fiber optic sensors for biomedical applications of optoacoustic imaging.
    Lamela H; Gallego D; Gutierrez R; Oraevsky A
    J Biophotonics; 2011 Mar; 4(3):184-92. PubMed ID: 21246745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon-photonics focused ultrasound detector for minimally invasive optoacoustic imaging.
    Nagli M; Koch J; Hazan Y; Volodarsky O; Ravi Kumar R; Levi A; Hahamovich E; Ternyak O; Overmeyer L; Rosenthal A
    Biomed Opt Express; 2022 Dec; 13(12):6229-6244. PubMed ID: 36589589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues.
    Zhang E; Laufer J; Beard P
    Appl Opt; 2008 Feb; 47(4):561-77. PubMed ID: 18239717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband optical ultrasound sensor with a unique open-cavity structure.
    Chow CM; Zhou Y; Guo Y; Norris TB; Wang X; Deng CX; Ye JY
    J Biomed Opt; 2011; 16(1):017001. PubMed ID: 21280922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements in optical generation of high-frequency ultrasound.
    Hou Y; Ashkenazi S; Huang SW; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Mar; 54(3):682-6. PubMed ID: 17375838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silicon Photonic Biosensors Using Label-Free Detection.
    Luan E; Shoman H; Ratner DM; Cheung KC; Chrostowski L
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30340405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined photoacoustic and magneto-acoustic imaging.
    Qu M; Mallidi S; Mehrmohammadi M; Ma LL; Johnston KP; Sokolov K; Emelianov S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4763-6. PubMed ID: 19964846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon-photonics acoustic detector for optoacoustic micro-tomography.
    Hazan Y; Levi A; Nagli M; Rosenthal A
    Nat Commun; 2022 Mar; 13(1):1488. PubMed ID: 35304481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode.
    Jaeger M; Niederhauser JJ; Hejazi M; Frenz M
    J Biomed Opt; 2005; 10(2):024035. PubMed ID: 15910108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Verification of polarising optics for the LISA optical bench.
    Dehne M; Tröbs M; Heinzel G; Danzmann K
    Opt Express; 2012 Dec; 20(25):27273-87. PubMed ID: 23262677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplification of optical delay by use of matched linearly chirped fiber Bragg gratings.
    Yang C; Yazdanfar S; Izatt J
    Opt Lett; 2004 Apr; 29(7):685-7. PubMed ID: 15072358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial characterization of the response of a silica optical fiber to wideband ultrasound.
    Rosenthal A; Caballero MÁ; Kellnberger S; Razansky D; Ntziachristos V
    Opt Lett; 2012 Aug; 37(15):3174-6. PubMed ID: 22859123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The application of interferometry to optical astronomical imaging.
    Baldwin JE; Haniff CA
    Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):969-86. PubMed ID: 12804289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optoacoustic imaging using fiber-optic interferometric sensors.
    Lamela H; Gallego D; Oraevsky A
    Opt Lett; 2009 Dec; 34(23):3695-7. PubMed ID: 19953165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase sensitive optical near-field mapping using frequency-shifted laser optical feedback interferometry.
    Blaize S; Bérenguier B; Stéfanon I; Bruyant A; Lérondel G; Royer P; Hugon O; Jacquin O; Lacot E
    Opt Express; 2008 Aug; 16(16):11718-26. PubMed ID: 18679441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.