BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 24895231)

  • 1. Molecular mechanism of cholangiocarcinoma carcinogenesis.
    Maemura K; Natsugoe S; Takao S
    J Hepatobiliary Pancreat Sci; 2014 Oct; 21(10):754-60. PubMed ID: 24895231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation in the carcinogenesis of cholangiocarcinoma.
    Chiang NJ; Shan YS; Hung WC; Chen LT
    Int J Biochem Cell Biol; 2015 Oct; 67():110-4. PubMed ID: 26100596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathogenesis of cholangiocarcinoma: From genetics to signalling pathways.
    Kongpetch S; Jusakul A; Ong CK; Lim WK; Rozen SG; Tan P; Teh BT
    Best Pract Res Clin Gastroenterol; 2015 Apr; 29(2):233-44. PubMed ID: 25966424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholangiocarcinoma: risk factors, environmental influences and oncogenesis.
    Al-Bahrani R; Abuetabh Y; Zeitouni N; Sergi C
    Ann Clin Lab Sci; 2013; 43(2):195-210. PubMed ID: 23694797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetic alterations in cholangiocarcinoma-sustained IL-6/STAT3 signaling in cholangio- carcinoma due to SOCS3 epigenetic silencing.
    Isomoto H
    Digestion; 2009; 79 Suppl 1():2-8. PubMed ID: 19153483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular pathogenesis of cholangiocarcinoma.
    Rizvi S; Gores GJ
    Dig Dis; 2014; 32(5):564-9. PubMed ID: 25034289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epigenetic alterations associated with cholangiocarcinoma (review).
    Isomoto H
    Oncol Rep; 2009 Aug; 22(2):227-32. PubMed ID: 19578760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic and transcriptional alterations of cholangiocarcinoma.
    Ito T; Sakurai-Yageta M; Goto A; Pairojkul C; Yongvanit P; Murakami Y
    J Hepatobiliary Pancreat Sci; 2014 Jun; 21(6):380-7. PubMed ID: 24532422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognostic significance of microRNA-203 in cholangiocarcinoma.
    Li J; Gao B; Huang Z; Duan T; Li D; Zhang S; Zhao Y; Liu L; Wang Q; Chen Z; Cheng K
    Int J Clin Exp Pathol; 2015; 8(8):9512-6. PubMed ID: 26464713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b.
    Yang R; Chen Y; Tang C; Li H; Wang B; Yan Q; Hu J; Zou S
    BMC Cancer; 2014 Dec; 14():917. PubMed ID: 25479763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mixed hepatocellular cholangiocarcinoma tumors: Cholangiolocellular carcinoma is a distinct molecular entity.
    Moeini A; Sia D; Zhang Z; Camprecios G; Stueck A; Dong H; Montal R; Torrens L; Martinez-Quetglas I; Fiel MI; Hao K; Villanueva A; Thung SN; Schwartz ME; Llovet JM
    J Hepatol; 2017 May; 66(5):952-961. PubMed ID: 28126467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of epigenetic alterations in cholangiocarcinoma.
    Tischoff I; Wittekind C; Tannapfel A
    J Hepatobiliary Pancreat Surg; 2006; 13(4):274-9. PubMed ID: 16858537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular aspects of cholangiocarcinoma.
    Kiguchi K
    J Hepatobiliary Pancreat Sci; 2014 Jun; 21(6):371-9. PubMed ID: 24420749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and epigenetic abnormalities in primary sclerosing cholangitis-associated cholangiocarcinoma.
    Timmer MR; Beuers U; Fockens P; Ponsioen CY; Rauws EA; Wang KK; Krishnadath KK
    Inflamm Bowel Dis; 2013 Jul; 19(8):1789-97. PubMed ID: 23615529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The pathways of genetic transformation in cholangiocarcinogenesis.
    Serafini FM; Radvinsky D
    Cancer Genet; 2016 Dec; 209(12):554-558. PubMed ID: 27720541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic bile duct injury associated with fibrotic matrix microenvironment provokes cholangiocarcinoma in p53-deficient mice.
    Farazi PA; Zeisberg M; Glickman J; Zhang Y; Kalluri R; DePinho RA
    Cancer Res; 2006 Jul; 66(13):6622-7. PubMed ID: 16818635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of epigenetic regulation in cholangiocarcinogenesis.
    Zhong B; Liao Q; Wang X; Wang X; Zhang J
    Biomed Pharmacother; 2023 Oct; 166():115290. PubMed ID: 37557012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gankyrin promotes tumor growth and metastasis through activation of IL-6/STAT3 signaling in human cholangiocarcinoma.
    Zheng T; Hong X; Wang J; Pei T; Liang Y; Yin D; Song R; Song X; Lu Z; Qi S; Liu J; Sun B; Xie C; Pan S; Li Y; Luo X; Li S; Fang X; Bhatta N; Jiang H; Liu L
    Hepatology; 2014 Mar; 59(3):935-46. PubMed ID: 24037855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emerging insights into the role of microRNAs in the pathogenesis of cholangiocarcinoma.
    Haga H; Yan I; Takahashi K; Wood J; Patel T
    Gene Expr; 2014; 16(2):93-9. PubMed ID: 24801170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biliary dysplasia in primary sclerosing cholangitis harbors cytogenetic abnormalities similar to cholangiocarcinoma.
    Kerr SE; Barr Fritcher EG; Campion MB; Voss JS; Kipp BR; Halling KC; Lewis JT
    Hum Pathol; 2014 Sep; 45(9):1797-804. PubMed ID: 25027853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.