These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 24895231)

  • 21. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice.
    Kasuga A; Semba T; Sato R; Nobusue H; Sugihara E; Takaishi H; Kanai T; Saya H; Arima Y
    Cancer Sci; 2021 May; 112(5):1822-1838. PubMed ID: 33068050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New molecular mechanisms in cholangiocarcinoma: signals triggering interleukin-6 production in tumor cells and KRAS co-opted epigenetic mediators driving metabolic reprogramming.
    Colyn L; Alvarez-Sola G; Latasa MU; Uriarte I; Herranz JM; Arechederra M; Vlachogiannis G; Rae C; Pineda-Lucena A; Casadei-Gardini A; Pedica F; Aldrighetti L; López-López A; López-Gonzálvez A; Barbas C; Ciordia S; Van Liempd SM; Falcón-Pérez JM; Urman J; Sangro B; Vicent S; Iraburu MJ; Prosper F; Nelson LJ; Banales JM; Martinez-Chantar ML; Marin JJG; Braconi C; Trautwein C; Corrales FJ; Cubero FJ; Berasain C; Fernandez-Barrena MG; Avila MA
    J Exp Clin Cancer Res; 2022 May; 41(1):183. PubMed ID: 35619118
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different carcinogenic process in cholangiocarcinoma cases epidemically developing among workers of a printing company in Japan.
    Sato Y; Kubo S; Takemura S; Sugawara Y; Tanaka S; Fujikawa M; Arimoto A; Harada K; Sasaki M; Nakanuma Y
    Int J Clin Exp Pathol; 2014; 7(8):4745-54. PubMed ID: 25197345
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma.
    Lewis JT; Talwalkar JA; Rosen CB; Smyrk TC; Abraham SC
    Am J Surg Pathol; 2010 Jan; 34(1):27-34. PubMed ID: 19898228
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interleukin-6 contributes to growth in cholangiocarcinoma cells by aberrant promoter methylation and gene expression.
    Wehbe H; Henson R; Meng F; Mize-Berge J; Patel T
    Cancer Res; 2006 Nov; 66(21):10517-24. PubMed ID: 17079474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of PDGFA and its receptor during carcinogenesis of Opisthorchis viverrini-associated cholangiocarcinoma.
    Boonjaraspinyo S; Wu Z; Boonmars T; Kaewkes S; Loilome W; Sithithaworn P; Nagano I; Takahashi Y; Yongvanit P; Bhudhisawasdi V
    Parasitol Int; 2012 Mar; 61(1):145-50. PubMed ID: 21777692
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global alterations of DNA methylation in cholangiocarcinoma target the Wnt signaling pathway.
    Goeppert B; Konermann C; Schmidt CR; Bogatyrova O; Geiselhart L; Ernst C; Gu L; Becker N; Zucknick M; Mehrabi A; Hafezi M; Klauschen F; Stenzinger A; Warth A; Breuhahn K; Renner M; Weichert W; Schirmacher P; Plass C; Weichenhan D
    Hepatology; 2014 Feb; 59(2):544-54. PubMed ID: 24002901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma.
    Lin KY; Ye H; Han BW; Wang WT; Wei PP; He B; Li XJ; Chen YQ
    Oncogene; 2016 Jun; 35(26):3376-86. PubMed ID: 26455324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Liver fluke granulin promotes extracellular vesicle-mediated crosstalk and cellular microenvironment conducive to cholangiocarcinoma.
    Arunsan P; Chaidee A; Cochran CJ; Mann VH; Tanno T; Kumkhaek C; Smout MJ; Karinshak SE; Rodpai R; Sotillo J; Loukas A; Laha T; Brindley PJ; Ittiprasert W
    Neoplasia; 2020 May; 22(5):203-216. PubMed ID: 32244128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small but mighty: How microRNAs drive the deadly progression of cholangiocarcinoma.
    Jalil AT; Abdulhadi MA; Al-Ameer LR; Khaleel LA; Abdulameer SJ; Hadi AM; Merza MS; Zabibah RS; Ali A
    Pathol Res Pract; 2023 Jul; 247():154565. PubMed ID: 37267725
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cholangiocarcinoma: Classification, Histopathology and Molecular Carcinogenesis.
    Lendvai G; Szekerczés T; Illyés I; Dóra R; Kontsek E; Gógl A; Kiss A; Werling K; Kovalszky I; Schaff Z; Borka K
    Pathol Oncol Res; 2020 Jan; 26(1):3-15. PubMed ID: 30448973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wnt/β-catenin signaling as an emerging potential key pharmacological target in cholangiocarcinoma.
    Zhang GF; Qiu L; Yang SL; Wu JC; Liu TJ
    Biosci Rep; 2020 Mar; 40(3):. PubMed ID: 32140709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome wide DNA copy number analysis in cholangiocarcinoma using high resolution molecular inversion probe single nucleotide polymorphism assay.
    Arnold A; Bahra M; Lenze D; Bradtmöller M; Guse K; Gehlhaar C; Bläker H; Heppner FL; Koch A
    Exp Mol Pathol; 2015 Oct; 99(2):344-53. PubMed ID: 26260902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fascin overexpression is involved in carcinogenesis and prognosis of human intrahepatic cholangiocarcinoma: immunohistochemical and molecular analysis.
    Iguchi T; Aishima S; Taketomi A; Nishihara Y; Fujita N; Sanefuji K; Sugimachi K; Yamashita Y; Maehara Y; Tsuneyoshi M
    Hum Pathol; 2009 Feb; 40(2):174-80. PubMed ID: 18835624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Activation-induced cytidine deaminase links bile duct inflammation to human cholangiocarcinoma.
    Komori J; Marusawa H; Machimoto T; Endo Y; Kinoshita K; Kou T; Haga H; Ikai I; Uemoto S; Chiba T
    Hepatology; 2008 Mar; 47(3):888-96. PubMed ID: 18306229
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histological features of precancerous and early cancerous lesions of biliary tract carcinoma.
    Aishima S; Kubo Y; Tanaka Y; Oda Y
    J Hepatobiliary Pancreat Sci; 2014 Jul; 21(7):448-52. PubMed ID: 24446428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Association between variants in inflammation and cancer-associated genes and risk and survival of cholangiocarcinoma.
    Chaiteerakij R; Juran BD; Aboelsoud MM; Harmsen WS; Moser CD; Giama NH; Allotey LK; Mettler TA; Baichoo E; Zhang X; Therneau TM; Lazaridis KN; Roberts LR
    Cancer Med; 2015 Oct; 4(10):1599-602. PubMed ID: 26276523
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications.
    Churi CR; Shroff R; Wang Y; Rashid A; Kang HC; Weatherly J; Zuo M; Zinner R; Hong D; Meric-Bernstam F; Janku F; Crane CH; Mishra L; Vauthey JN; Wolff RA; Mills G; Javle M
    PLoS One; 2014; 9(12):e115383. PubMed ID: 25536104
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CAPS1 Suppresses Tumorigenesis in Cholangiocarcinoma.
    Weng S; Janssen HLA; Zhang N; Tang W; Bai E; Yang B; Dong L
    Dig Dis Sci; 2020 Apr; 65(4):1053-1063. PubMed ID: 31562609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Terminal fucose mediates progression of human cholangiocarcinoma through EGF/EGFR activation and the Akt/Erk signaling pathway.
    Indramanee S; Sawanyawisuth K; Silsirivanit A; Dana P; Phoomak C; Kariya R; Klinhom-On N; Sorin S; Wongkham C; Okada S; Wongkham S
    Sci Rep; 2019 Nov; 9(1):17266. PubMed ID: 31754244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.