BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24895255)

  • 1. Electron attachment to some naphthoquinone derivatives: long-lived molecular anion formation.
    Asfandiarov NL; Pshenichnyuk SA; Vorob'ev AS; Nafikova EP; Elkin YN; Pelageev DN; Koltsova EA; Modelli A
    Rapid Commun Mass Spectrom; 2014 Jul; 28(14):1580-90. PubMed ID: 24895255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance electron attachment and long-lived negative ions of phthalimide and pyromellitic diimide.
    Pshenichnyuk SA; Vorob'ev AS; Modelli A
    J Chem Phys; 2011 Nov; 135(18):184301. PubMed ID: 22088059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron attachment to trans-azobenzene.
    Modelli A; Burrow PD
    Phys Chem Chem Phys; 2009 Oct; 11(38):8448-55. PubMed ID: 19774275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporary anion states of pyrimidine and halopyrimidines.
    Modelli A; Bolognesi P; Avaldi L
    J Phys Chem A; 2011 Oct; 115(39):10775-82. PubMed ID: 21875136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissociative Electron Attachment to 2,3,6,7,10,11-Hexabromotriphenylene.
    Goryunkov AA; Asfandiarov NL; Muftakhov MV; Ioffe IN; Solovyeva VA; Lukonina NS; Markov VY; Rakhmeyev RG; Pshenichnyuk SA
    J Phys Chem A; 2020 Jan; 124(4):690-694. PubMed ID: 31914729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of gas phase decabromodiphenyl ether by resonant interaction with low-energy electrons.
    Pshenichnyuk SA; Lomakin GS; Modelli A
    Phys Chem Chem Phys; 2011 May; 13(20):9293-300. PubMed ID: 21472185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can mitochondrial dysfunction be initiated by dissociative electron attachment to xenobiotics?
    Pshenichnyuk SA; Modelli A
    Phys Chem Chem Phys; 2013 Jun; 15(23):9125-35. PubMed ID: 23646356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance electron attachment to tetracyanoquinodimethane.
    Pshenichnyuk SA; Modelli A; Lazneva EF; Komolov AS
    J Phys Chem A; 2014 Aug; 118(34):6810-8. PubMed ID: 25121340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron attachment to indole and related molecules.
    Modelli A; Jones D; Pshenichnyuk SA
    J Chem Phys; 2013 Nov; 139(18):184305. PubMed ID: 24320272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular anion formation in 9,10-anthraquinone: Dependence of the electron detachment rate on temperature and incident electron energy.
    Pshenichnyuk SA; Vorob'ev AS; Asfandiarov NL; Modelli A
    J Chem Phys; 2010 Jun; 132(24):244313. PubMed ID: 20590199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase dissociation of 1,4-naphthoquinone derivative anions by electrospray ionization tandem mass spectrometry.
    Vessecchi R; Carollo CA; Lopes JN; Crotti AE; Lopes NP; Galembeck SE
    J Mass Spectrom; 2009 Aug; 44(8):1224-33. PubMed ID: 19521969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways.
    Modelli A; Pshenichnyuk SA
    Phys Chem Chem Phys; 2013 Feb; 15(5):1588-600. PubMed ID: 23243660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonance electron attachment to plant hormones and its likely connection with biochemical processes.
    Pshenichnyuk SA; Modelli A
    J Chem Phys; 2014 Jan; 140(3):034313. PubMed ID: 25669385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ETS and DEAS studies of the reduction of xenobiotics in mitochondrial intermembrane space.
    Pshenichnyuk SA; Modelli A
    Methods Mol Biol; 2015; 1265():285-305. PubMed ID: 25634282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A unified statistical RRKM approach to the fragmentation and autoneutralization of metastable molecular negative ions of hexaazatrinaphthylenes.
    Khatymov RV; Shchukin PV; Muftakhov MV; Yakushchenko IK; Yarmolenko OV; Pankratyev EY
    Phys Chem Chem Phys; 2020 Feb; 22(5):3073-3088. PubMed ID: 31965122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards a molecular-level understanding of the reactivity differences for radical anions of juglone and plumbagin: an electrochemical and spectroelectrochemical approach.
    Hernández-Muñoz LS; Gómez M; González FJ; González I; Frontana C
    Org Biomol Chem; 2009 May; 7(9):1896-903. PubMed ID: 19590786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoreactions of 1,4-Naphthoquinones: effects of substituents and water on the intermediates and reactivity.
    Görner H
    Photochem Photobiol; 2005; 81(2):376-83. PubMed ID: 15560739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-mediated hydrogen generation in Photosystem I: attachment of a naphthoquinone-molecular wire-Pt nanoparticle to the A1A and A1B sites.
    Gorka M; Schartner J; van der Est A; Rögner M; Golbeck JH
    Biochemistry; 2014 Apr; 53(14):2295-306. PubMed ID: 24649965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonant electron capture by uridine and deoxyuridine molecules: Fragmentation with charge transfer.
    Muftakhov MV; Shchukin PV
    Rapid Commun Mass Spectrom; 2019 Mar; 33(5):482-490. PubMed ID: 30430683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Species with negative electron affinity and standard DFT methods. Finding the valence anions.
    Puiatti M; Vera DM; Pierini AB
    Phys Chem Chem Phys; 2008 Mar; 10(10):1394-9. PubMed ID: 18309394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.