These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24895324)

  • 21. Highly efficient carrier multiplication in PbS nanosheets.
    Aerts M; Bielewicz T; Klinke C; Grozema FC; Houtepen AJ; Schins JM; Siebbeles LD
    Nat Commun; 2014 Apr; 5():3789. PubMed ID: 24781188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing Interface Recombination through Mixed Nanocrystal Interlayers in PbS Quantum Dot Solar Cells.
    Pradhan S; Stavrinadis A; Gupta S; Konstantatos G
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27390-27395. PubMed ID: 28787128
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Schottky quantum dot solar cells stable in air under solar illumination.
    Tang J; Wang X; Brzozowski L; Barkhouse DA; Debnath R; Levina L; Sargent EH
    Adv Mater; 2010 Mar; 22(12):1398-402. PubMed ID: 20437490
    [No Abstract]   [Full Text] [Related]  

  • 24. Dry-Deposited Transparent Carbon Nanotube Film as Front Electrode in Colloidal Quantum Dot Solar Cells.
    Zhang X; Aitola K; Hägglund C; Kaskela A; Johansson MB; Sveinbjörnsson K; Kauppinen EI; Johansson EM
    ChemSusChem; 2017 Jan; 10(2):434-441. PubMed ID: 27873480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-type colloidal-quantum-dot solids for photovoltaics.
    Zhitomirsky D; Furukawa M; Tang J; Stadler P; Hoogland S; Voznyy O; Liu H; Sargent EH
    Adv Mater; 2012 Dec; 24(46):6181-5. PubMed ID: 22968808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Panchromatic quantum-dot-sensitized solar cells based on a parallel tandem structure.
    Zhou N; Yang Y; Huang X; Wu H; Luo Y; Li D; Meng Q
    ChemSusChem; 2013 Apr; 6(4):687-92. PubMed ID: 23495072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved current extraction from ZnO/PbS quantum dot heterojunction photovoltaics using a MoO3 interfacial layer.
    Brown PR; Lunt RR; Zhao N; Osedach TP; Wanger DD; Chang LY; Bawendi MG; Bulović V
    Nano Lett; 2011 Jul; 11(7):2955-61. PubMed ID: 21661734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of SnS nanoparticles by SILAR method for quantum dot-sensitized solar cells.
    Tsukigase H; Suzuki Y; Berger MH; Sagawa T; Yoshikawa S
    J Nanosci Nanotechnol; 2011 Mar; 11(3):1914-22. PubMed ID: 21449328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All inorganic iron pyrite nano-heterojunction solar cells.
    Kirkeminde A; Scott R; Ren S
    Nanoscale; 2012 Dec; 4(24):7649-54. PubMed ID: 23041909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots.
    Koleilat GI; Levina L; Shukla H; Myrskog SH; Hinds S; Pattantyus-Abraham AG; Sargent EH
    ACS Nano; 2008 May; 2(5):833-40. PubMed ID: 19206479
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Singlet exciton fission-sensitized infrared quantum dot solar cells.
    Ehrler B; Wilson MW; Rao A; Friend RH; Greenham NC
    Nano Lett; 2012 Feb; 12(2):1053-7. PubMed ID: 22257168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of bond adaptability in the passivation of colloidal quantum dot solids.
    Thon SM; Ip AH; Voznyy O; Levina L; Kemp KW; Carey GH; Masala S; Sargent EH
    ACS Nano; 2013 Sep; 7(9):7680-8. PubMed ID: 23909748
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colloidal quantum dot photovoltaics: the effect of polydispersity.
    Zhitomirsky D; Kramer IJ; Labelle AJ; Fischer A; Debnath R; Pan J; Bakr OM; Sargent EH
    Nano Lett; 2012 Feb; 12(2):1007-12. PubMed ID: 22257205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.
    Lin CC; Han HV; Chen HC; Chen KJ; Tsai YL; Lin WY; Kuo HC; Yu P
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1051-63. PubMed ID: 24749412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved performance of nanowire-quantum-dot-polymer solar cells by chemical treatment of the quantum dot with ligand and solvent materials.
    Nadarajah A; Smith T; Könenkamp R
    Nanotechnology; 2012 Dec; 23(48):485403. PubMed ID: 23129022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ZnO Hierarchical Nanostructure Photoanode in a CdS Quantum Dot-Sensitized Solar Cell.
    Liu H; Zhang G; Sun W; Shen Z; Shi M
    PLoS One; 2015; 10(9):e0138298. PubMed ID: 26379268
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.
    Chang J; Kuga Y; Mora-Seró I; Toyoda T; Ogomi Y; Hayase S; Bisquert J; Shen Q
    Nanoscale; 2015 Mar; 7(12):5446-56. PubMed ID: 25732872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid-state colloidal CuInS
    So D; Pradhan S; Konstantatos G
    Nanoscale; 2016 Sep; 8(37):16776-16785. PubMed ID: 27714085
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Strong enhancement of solar cell efficiency due to quantum dots with built-in charge.
    Sablon KA; Little JW; Mitin V; Sergeev A; Vagidov N; Reinhardt K
    Nano Lett; 2011 Jun; 11(6):2311-7. PubMed ID: 21545165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacial Heterojunction Enables High Efficient PbS Quantum Dot Solar Cells.
    Zhang L; Chen Y; Cao S; Yuan D; Tang X; Wang D; Gao Y; Zhang J; Zhao Y; Yang X; Lu Z; Fan Q; Sun B
    Adv Sci (Weinh); 2024 Jul; 11(26):e2402756. PubMed ID: 38696647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.