These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 24895479)
1. The behavior of ROS-scavenging nanoparticles in blood. Shimizu M; Yoshitomi T; Nagasaki Y J Clin Biochem Nutr; 2014 May; 54(3):166-73. PubMed ID: 24895479 [TBL] [Abstract][Full Text] [Related]
2. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles. Yoshitomi T; Hirayama A; Nagasaki Y Biomaterials; 2011 Nov; 32(31):8021-8. PubMed ID: 21816462 [TBL] [Abstract][Full Text] [Related]
3. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - Synergistic effect of thrombolysis and antioxidant. Mei T; Kim A; Vong LB; Marushima A; Puentes S; Matsumaru Y; Matsumura A; Nagasaki Y Biomaterials; 2019 Sep; 215():119209. PubMed ID: 31181394 [TBL] [Abstract][Full Text] [Related]
4. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Yoshitomi T; Nagasaki Y Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the Toxicity and Antioxidant Activity of Redox Nanoparticles in Zebrafish (Danio rerio) Embryos. Vong LB; Kobayashi M; Nagasaki Y Mol Pharm; 2016 Sep; 13(9):3091-7. PubMed ID: 27186993 [TBL] [Abstract][Full Text] [Related]
6. Scavenging of reactive oxygen species induced by hyperthermia in biological fluid. Ueno M; Nyui M; Nakanishi I; Anzai K; Ozawa T; Matsumoto K; Uto Y J Clin Biochem Nutr; 2014 Mar; 54(2):75-80. PubMed ID: 24688214 [TBL] [Abstract][Full Text] [Related]
7. Novel neuroprotection using antioxidant nanoparticles in a mouse model of head trauma. Takahashi T; Marushima A; Nagasaki Y; Hirayama A; Muroi A; Puentes S; Mujagic A; Ishikawa E; Matsumura A J Trauma Acute Care Surg; 2020 May; 88(5):677-685. PubMed ID: 32039974 [TBL] [Abstract][Full Text] [Related]
8. The Interaction of Water-Soluble Nitroxide Radicals with Photosystem II. Trubitsin BV; Milanovsky GE; Mamedov MD; Semenov AY; Tikhonov AN Appl Magn Reson; 2022; 53(7-9):1053-1067. PubMed ID: 34522067 [TBL] [Abstract][Full Text] [Related]
9. Creation of a blood-compatible surface: a novel strategy for suppressing blood activation and coagulation using a nitroxide radical-containing polymer with reactive oxygen species scavenging activity. Yoshitomi T; Yamaguchi Y; Kikuchi A; Nagasaki Y Acta Biomater; 2012 Mar; 8(3):1323-9. PubMed ID: 22155332 [TBL] [Abstract][Full Text] [Related]
11. Neurovascular Unit Protection From Cerebral Ischemia-Reperfusion Injury by Radical-Containing Nanoparticles in Mice. Hosoo H; Marushima A; Nagasaki Y; Hirayama A; Ito H; Puentes S; Mujagic A; Tsurushima H; Tsuruta W; Suzuki K; Matsui H; Matsumaru Y; Yamamoto T; Matsumura A Stroke; 2017 Aug; 48(8):2238-2247. PubMed ID: 28655813 [TBL] [Abstract][Full Text] [Related]
12. Redox nanoparticles inhibit curcumin oxidative degradation and enhance its therapeutic effect on prostate cancer. Thangavel S; Yoshitomi T; Sakharkar MK; Nagasaki Y J Control Release; 2015 Jul; 209():110-9. PubMed ID: 25912409 [TBL] [Abstract][Full Text] [Related]
13. Redox-active injectable gel using thermo-responsive nanoscale polyion complex flower micelle for noninvasive treatment of local inflammation. Pua ML; Yoshitomi T; Chonpathompikunlert P; Hirayama A; Nagasaki Y J Control Release; 2013 Dec; 172(3):914-20. PubMed ID: 24157475 [TBL] [Abstract][Full Text] [Related]
14. An orally administered redox nanoparticle that accumulates in the colonic mucosa and reduces colitis in mice. Vong LB; Tomita T; Yoshitomi T; Matsui H; Nagasaki Y Gastroenterology; 2012 Oct; 143(4):1027-36.e3. PubMed ID: 22771506 [TBL] [Abstract][Full Text] [Related]
15. Brain imaging in methamphetamine-treated mice using a nitroxide contrast agent for EPR imaging of the redox status and a gadolinium contrast agent for MRI observation of blood-brain barrier function. Emoto MC; Yamato M; Sato-Akaba H; Yamada K; Matsuoka Y; Fujii HG Free Radic Res; 2015; 49(8):1038-47. PubMed ID: 25968953 [TBL] [Abstract][Full Text] [Related]
16. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Feliciano CP; Tsuboi K; Suzuki K; Kimura H; Nagasaki Y Biomaterials; 2017 Jun; 129():68-82. PubMed ID: 28324866 [TBL] [Abstract][Full Text] [Related]
17. Effects of oxygen challenging to tissue redox and pO Matsumoto KI; Mitchell JB; Krishna MC Free Radic Biol Med; 2019 Jan; 130():343-347. PubMed ID: 30391676 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the in vivo antioxidative activity of redox nanoparticles by using a developing chicken egg as an alternative animal model. Abe C; Uto Y; Kawasaki A; Noguchi C; Tanaka R; Yoshitomi T; Nagasaki Y; Endo Y; Hori H J Control Release; 2014 May; 182():67-72. PubMed ID: 24637467 [TBL] [Abstract][Full Text] [Related]
19. TEMPOL increases NAD(+) and improves redox imbalance in obese mice. Yamato M; Kawano K; Yamanaka Y; Saiga M; Yamada K Redox Biol; 2016 Aug; 8():316-22. PubMed ID: 26942863 [TBL] [Abstract][Full Text] [Related]