These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 24896176)

  • 41. Polymerization force driven buckling of microtubule bundles determines the wavelength of patterns formed in tubulin solutions.
    Guo Y; Liu Y; Tang JX; Valles JM
    Phys Rev Lett; 2007 May; 98(19):198103. PubMed ID: 17677665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular mechanisms of Tau binding to microtubules and its role in microtubule dynamics in live cells.
    Breuzard G; Hubert P; Nouar R; De Bessa T; Devred F; Barbier P; Sturgis JN; Peyrot V
    J Cell Sci; 2013 Jul; 126(Pt 13):2810-9. PubMed ID: 23659998
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Anisotropic elastic properties of microtubules.
    Tuszyński JA; Luchko T; Portet S; Dixon JM
    Eur Phys J E Soft Matter; 2005 May; 17(1):29-35. PubMed ID: 15864724
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Microtubule encounter-based catastrophe in Arabidopsis cortical microtubule arrays.
    Chi Z; Ambrose C
    BMC Plant Biol; 2016 Jan; 16():18. PubMed ID: 26774503
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solution structure of GDP-tubulin double rings to 3 nm resolution and comparison with microtubules.
    Díaz JF; Pantos E; Bordas J; Andreu JM
    J Mol Biol; 1994 Apr; 238(2):214-25. PubMed ID: 8158650
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Homology modeling of tubulin: influence predictions for microtubule's biophysical properties.
    Carpenter EJ; Huzil JT; Ludueña RF; Tuszynski JA
    Eur Biophys J; 2006 Dec; 36(1):35-43. PubMed ID: 16941085
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microtubule assembly and disassembly dynamics model: Exploring dynamic instability and identifying features of Microtubules' Growth, Catastrophe, Shortening, and Rescue.
    Kliuchnikov E; Klyshko E; Kelly MS; Zhmurov A; Dima RI; Marx KA; Barsegov V
    Comput Struct Biotechnol J; 2022; 20():953-974. PubMed ID: 35242287
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural effects of cap, crack, and intrinsic curvature on the microtubule catastrophe kinetics.
    Lee CT; Terentjev EM
    J Chem Phys; 2019 Oct; 151(13):135101. PubMed ID: 31594313
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mean-field study of the role of lateral cracks in microtubule dynamics.
    Margolin G; Goodson HV; Alber MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041905. PubMed ID: 21599199
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microtubule self-healing and defect creation investigated by in-line force measurements during high-speed atomic force microscopy imaging.
    Ganser C; Uchihashi T
    Nanoscale; 2018 Dec; 11(1):125-135. PubMed ID: 30525150
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microtubule self-repair.
    Théry M; Blanchoin L
    Curr Opin Cell Biol; 2021 Feb; 68():144-154. PubMed ID: 33217636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anisotropic elastic network modeling of entire microtubules.
    Deriu MA; Soncini M; Orsi M; Patel M; Essex JW; Montevecchi FM; Redaelli A
    Biophys J; 2010 Oct; 99(7):2190-9. PubMed ID: 20923653
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi scale modeling of 2450MHz electric field effects on microtubule mechanical properties.
    Setayandeh SS; Lohrasebi A
    J Mol Graph Model; 2016 Nov; 70():122-128. PubMed ID: 27723560
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microtubule catastrophe under force: mathematical and computational results from a Brownian ratchet model.
    Yadav V; Srinivas B; Gopalakrishnan M
    Phys Biol; 2020 Dec; 18(1):016006. PubMed ID: 33045690
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Force-velocity relation for growing microtubules.
    Kolomeisky AB; Fisher ME
    Biophys J; 2001 Jan; 80(1):149-54. PubMed ID: 11159390
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between the nonlinear ferroelectric and liquid crystal models for microtubules.
    Satarić MV; Tuszyński JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 1):011901. PubMed ID: 12636526
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microtubules self-repair in response to mechanical stress.
    Schaedel L; John K; Gaillard J; Nachury MV; Blanchoin L; Théry M
    Nat Mater; 2015 Nov; 14(11):1156-63. PubMed ID: 26343914
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mechanical communication within the microtubule through network-based analysis of tubulin dynamics.
    Cannariato M; Zizzi EA; Pallante L; Miceli M; Deriu MA
    Biomech Model Mechanobiol; 2024 Apr; 23(2):569-579. PubMed ID: 38060156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the significance of microtubule flexural behavior in cytoskeletal mechanics.
    Mehrbod M; Mofrad MR
    PLoS One; 2011; 6(10):e25627. PubMed ID: 21998675
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microtubules soften due to cross-sectional flattening.
    Memet E; Hilitski F; Morris MA; Schwenger WJ; Dogic Z; Mahadevan L
    Elife; 2018 Jun; 7():. PubMed ID: 29856317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.