BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 24896230)

  • 1. Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.
    Ebrish MA; Olson EJ; Koester SJ
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10296-303. PubMed ID: 24896230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capacitive Sensing of Glucose in Electrolytes Using Graphene Quantum Capacitance Varactors.
    Zhang Y; Ma R; Zhen XV; Kudva YC; Bühlmann P; Koester SJ
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38863-38869. PubMed ID: 29023095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capacitive Sensing of Intercalated H2O Molecules Using Graphene.
    Olson EJ; Ma R; Sun T; Ebrish MA; Haratipour N; Min K; Aluru NR; Koester SJ
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25804-12. PubMed ID: 26502269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-quality graphene p-n junctions via resist-free fabrication and solution-based noncovalent functionalization.
    Cheng HC; Shiue RJ; Tsai CC; Wang WH; Chen YT
    ACS Nano; 2011 Mar; 5(3):2051-9. PubMed ID: 21322639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wet chemical functionalization of graphene.
    Hirsch A; Englert JM; Hauke F
    Acc Chem Res; 2013 Jan; 46(1):87-96. PubMed ID: 22946482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel behavior of monolayer quantum gases on graphene, graphane and fluorographene.
    Reatto L; Galli DE; Nava M; Cole MW
    J Phys Condens Matter; 2013 Nov; 25(44):443001. PubMed ID: 24113280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Density Functional Theory Calculations of the Quantum Capacitance of Graphene Oxide as a Supercapacitor Electrode.
    Song C; Wang J; Meng Z; Hu F; Jian X
    Chemphyschem; 2018 Jul; 19(13):1579-1583. PubMed ID: 29603849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the quantum capacitance of graphene.
    Xia J; Chen F; Li J; Tao N
    Nat Nanotechnol; 2009 Aug; 4(8):505-9. PubMed ID: 19662012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonperturbative chemical modification of graphene for protein micropatterning.
    Kodali VK; Scrimgeour J; Kim S; Hankinson JH; Carroll KM; de Heer WA; Berger C; Curtis JE
    Langmuir; 2011 Feb; 27(3):863-5. PubMed ID: 21182241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the Quantum Capacitance of Graphene-Based Supercapacitors by the Doping and Co-Doping: First-Principles Calculations.
    Xu Q; Yang G; Fan X; Zheng W
    ACS Omega; 2019 Aug; 4(8):13209-13217. PubMed ID: 31460448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere.
    Xu H; Chen Y; Xu W; Zhang H; Kong J; Dresselhaus MS; Zhang J
    Small; 2011 Oct; 7(20):2945-52. PubMed ID: 21901822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead-position dependent regular oscillations and random fluctuations of conductance in graphene quantum dots.
    Huang L; Yang R; Lai YC; Ferry DK
    J Phys Condens Matter; 2013 Feb; 25(8):085502. PubMed ID: 23343960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent functionalization of dipole-modulating molecules on trilayer graphene: an avenue for graphene-interfaced molecular machines.
    Nguyen P; Li J; Sreeprasad TS; Jasuja K; Mohanty N; Ikenberry M; Hohn K; Shenoy VB; Berry V
    Small; 2013 Nov; 9(22):3823-8. PubMed ID: 23713056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How do the electrical properties of graphene change with its functionalization?
    Sreeprasad TS; Berry V
    Small; 2013 Feb; 9(3):341-50. PubMed ID: 23169614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large capacitance enhancement induced by metal-doping in graphene-based supercapacitors: a first-principles-based assessment.
    Paek E; Pak AJ; Hwang GS
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12168-76. PubMed ID: 24983127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method.
    Jung MW; Myung S; Kim KW; Song W; Jo YY; Lee SS; Lim J; Park CY; An KS
    Nanotechnology; 2014 Jul; 25(28):285302. PubMed ID: 24971722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Stable and Tunable n-Type Graphene Field-Effect Transistors with Poly(vinyl alcohol) Films.
    Kim S; Zhao P; Aikawa S; Einarsson E; Chiashi S; Maruyama S
    ACS Appl Mater Interfaces; 2015 May; 7(18):9702-8. PubMed ID: 25872933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene field-effect transistors: electrochemical gating, interfacial capacitance, and biosensing applications.
    Chen F; Qing Q; Xia J; Tao N
    Chem Asian J; 2010 Oct; 5(10):2144-53. PubMed ID: 20715049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of the interaction forces between metals and graphene by quantum chemical calculations and dynamic force measurements under ambient conditions.
    Lazar P; Zhang S; Safářová K; Li Q; Froning JP; Granatier J; Hobza P; Zbořil R; Besenbacher F; Dong M; Otyepka M
    ACS Nano; 2013 Feb; 7(2):1646-51. PubMed ID: 23346897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approaching ballistic transport in suspended graphene.
    Du X; Skachko I; Barker A; Andrei EY
    Nat Nanotechnol; 2008 Aug; 3(8):491-5. PubMed ID: 18685637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.