BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 24896564)

  • 1. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO.
    Cleasby A; Yon J; Day PJ; Richardson C; Tickle IJ; Williams PA; Callahan JF; Carr R; Concha N; Kerns JK; Qi H; Sweitzer T; Ward P; Davies TG
    PLoS One; 2014; 9(6):e98896. PubMed ID: 24896564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes.
    Ichikawa T; Li J; Meyer CJ; Janicki JS; Hannink M; Cui T
    PLoS One; 2009 Dec; 4(12):e8391. PubMed ID: 20027226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and biochemical characterization establishes a detailed understanding of KEAP1-CUL3 complex assembly.
    Adamson RJ; Payne NC; Bartual SG; Mazitschek R; Bullock AN
    Free Radic Biol Med; 2023 Aug; 204():215-225. PubMed ID: 37156295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of novel small-molecule NRF2 activators: Structural and biochemical validation of stereospecific KEAP1 binding.
    Huerta C; Jiang X; Trevino I; Bender CF; Ferguson DA; Probst B; Swinger KK; Stoll VS; Thomas PJ; Dulubova I; Visnick M; Wigley WC
    Biochim Biophys Acta; 2016 Nov; 1860(11 Pt A):2537-2552. PubMed ID: 27474998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the multiple binding modes of Dimethyl Fumarate (DMF) and its analogs to the Kelch domain of Keap1.
    Unni S; Deshmukh P; Krishnappa G; Kommu P; Padmanabhan B
    FEBS J; 2021 Mar; 288(5):1599-1613. PubMed ID: 32672401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Point Mutation at C151 of
    Gatbonton-Schwager T; Yagishita Y; Joshi T; Wakabayashi N; Srinivasan H; Suzuki T; Yamamoto M; Kensler TW
    Mol Pharmacol; 2023 Aug; 104(2):51-61. PubMed ID: 37188495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3.
    Rachakonda G; Xiong Y; Sekhar KR; Stamer SL; Liebler DC; Freeman ML
    Chem Res Toxicol; 2008 Mar; 21(3):705-10. PubMed ID: 18251510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDDO-imidazolide Targets Multiple Amino Acid Residues on the Nrf2 Adaptor, Keap1.
    Meng X; Waddington JC; Tailor A; Lister A; Hamlett J; Berry N; Park BK; Sporn MB
    J Med Chem; 2020 Sep; 63(17):9965-9976. PubMed ID: 32787104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis of Keap1 interactions with Nrf2.
    Canning P; Sorrell FJ; Bullock AN
    Free Radic Biol Med; 2015 Nov; 88(Pt B):101-107. PubMed ID: 26057936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery.
    Madden SK; Itzhaki LS
    Biochim Biophys Acta Proteins Proteom; 2020 Jul; 1868(7):140405. PubMed ID: 32120017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine-based regulation of the CUL3 adaptor protein Keap1.
    Sekhar KR; Rachakonda G; Freeman ML
    Toxicol Appl Pharmacol; 2010 Apr; 244(1):21-6. PubMed ID: 19560482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway.
    Zhang DD; Lo SC; Sun Z; Habib GM; Lieberman MW; Hannink M
    J Biol Chem; 2005 Aug; 280(34):30091-9. PubMed ID: 15983046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of dimerization of BTB-IVR domains of Keap1 and its interaction with Cul3, by molecular modeling.
    Chauhan N; Chaunsali L; Deshmukh P; Padmanabhan B
    Bioinformation; 2013; 9(9):450-5. PubMed ID: 23847398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase.
    Cullinan SB; Gordan JD; Jin J; Harper JW; Diehl JA
    Mol Cell Biol; 2004 Oct; 24(19):8477-86. PubMed ID: 15367669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice.
    Yates MS; Tran QT; Dolan PM; Osburn WO; Shin S; McCulloch CC; Silkworth JB; Taguchi K; Yamamoto M; Williams CR; Liby KT; Sporn MB; Sutter TR; Kensler TW
    Carcinogenesis; 2009 Jun; 30(6):1024-31. PubMed ID: 19386581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.