These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 24896790)
1. Vigitel--Aracaju, Sergipe, 2008: the effects of post-stratification adjustments in correcting biases due to the small amount of households with a landline telephone. Bernal RT; Malta DC; de Morais Neto OL; Claro RM; Mendoça BC; de Oliveira AC; da Silva NN Rev Bras Epidemiol; 2014; 17(1):163-74. PubMed ID: 24896790 [TBL] [Abstract][Full Text] [Related]
2. Telephone survey: post-stratification adjustments to compensate non-coverage bias in city of Rio Branco, Northern Brazil. Bernal RT; Malta DC; Araújo TS; Silva NN Rev Saude Publica; 2013 Apr; 47(2):316-25. PubMed ID: 24037359 [TBL] [Abstract][Full Text] [Related]
3. Validity of data collected by telephone survey: a comparison of VIGITEL 2008 and 'Saúde em Beagá' survey. Ferreira AD; César CC; Malta DC; Andrade AC; Ramos CG; Proietti FA; Bernal RT; Caiaffa WT Rev Bras Epidemiol; 2011 Sep; 14 Suppl 1():16-30. PubMed ID: 22002139 [TBL] [Abstract][Full Text] [Related]
4. Bias of health estimates obtained from chronic disease and risk factor surveillance systems using telephone population surveys in Australia: results from a representative face-to-face survey in Australia from 2010 to 2013. Dal Grande E; Chittleborough CR; Campostrini S; Taylor AW BMC Med Res Methodol; 2016 Apr; 16():44. PubMed ID: 27089889 [TBL] [Abstract][Full Text] [Related]
5. Surveying alcohol and other drug use through telephone sampling: a comparison of landline and mobile phone samples. Livingston M; Dietze P; Ferris J; Pennay D; Hayes L; Lenton S BMC Med Res Methodol; 2013 Mar; 13():41. PubMed ID: 23497161 [TBL] [Abstract][Full Text] [Related]
6. Reevaluating the need for concern regarding noncoverage bias in landline surveys. Blumberg SJ; Luke JV Am J Public Health; 2009 Oct; 99(10):1806-10. PubMed ID: 19696381 [TBL] [Abstract][Full Text] [Related]
7. Estimates of mammography coverage according to health surveys in Brazil. Viacava F; Souza-Junior PR; Moreira Rda S Rev Saude Publica; 2009 Nov; 43 Suppl 2():117-25. PubMed ID: 19936506 [TBL] [Abstract][Full Text] [Related]
8. Telephone coverage and health survey estimates: evaluating the need for concern about wireless substitution. Blumberg SJ; Luke JV; Cynamon ML Am J Public Health; 2006 May; 96(5):926-31. PubMed ID: 16571707 [TBL] [Abstract][Full Text] [Related]
9. Quantifying bias in a health survey: modeling total survey error in the national immunization survey. Molinari NM; Wolter KM; Skalland B; Montgomery R; Khare M; Smith PJ; Barron ML; Copeland K; Santos K; Singleton JA Stat Med; 2011 Feb; 30(5):505-14. PubMed ID: 21294147 [TBL] [Abstract][Full Text] [Related]
10. Improving public health surveillance using a dual-frame survey of landline and cell phone numbers. Hu SS; Balluz L; Battaglia MP; Frankel MR Am J Epidemiol; 2011 Mar; 173(6):703-11. PubMed ID: 21343246 [TBL] [Abstract][Full Text] [Related]
11. [Health survey in Campinas, São Paulo State, Brazil (ISACamp): comparison of estimates according to ownership of a residential telephone line]. Francisco PM; Barros MB; Segri NJ; Cesar CL; Alves MC Cad Saude Publica; 2011 Oct; 27(10):1951-60. PubMed ID: 22031199 [TBL] [Abstract][Full Text] [Related]
12. Telephone service interruption weighting adjustments for state health insurance surveys. Davern M; Lepkowski J; Call KT; Arnold N; Johnson TL; Goldsteen K; Todd-Malmlov A; Blewett LA Inquiry; 2004; 41(3):280-90. PubMed ID: 15669746 [TBL] [Abstract][Full Text] [Related]
13. [Potential selection bias in telephone surveys: landline and mobile phones]. Garcia-Continente X; Pérez-Giménez A; López MJ; Nebot M Gac Sanit; 2014; 28(2):170-2. PubMed ID: 24300381 [TBL] [Abstract][Full Text] [Related]
14. Home landline telephone coverage and potential bias in epidemiological surveys. Bernal R; Silva NN Rev Saude Publica; 2009 Jun; 43(3):421-6. PubMed ID: 19377748 [TBL] [Abstract][Full Text] [Related]
15. Surveillance System for Risk and Protective Factors for Chronic Diseases by Telephone Survey (Vigitel): changes in weighting methodology. Bernal RTI; Iser BPM; Malta DC; Claro RM Epidemiol Serv Saude; 2017; 26(4):701-712. PubMed ID: 29211136 [TBL] [Abstract][Full Text] [Related]
16. Measuring health behaviors and landline telephones: potential coverage bias in a low-income, rural population. Shebl F; Poppell CE; Zhan M; Dwyer DM; Hopkins AB; Groves C; Reed F; Devadason C; Steinberger EK Public Health Rep; 2009; 124(4):495-502. PubMed ID: 19618786 [TBL] [Abstract][Full Text] [Related]
17. Profiling the mobile-only population in Australia: insights from the Australian National Health Survey. Baffour B; Haynes M; Dinsdale S; Western M; Pennay D Aust N Z J Public Health; 2016 Oct; 40(5):443-447. PubMed ID: 27372061 [TBL] [Abstract][Full Text] [Related]
18. Comparison of estimates for the self-reported chronic conditions among household survey and telephone survey--Campinas (SP), Brazil. Francisco PM; Barros MB; Segri NJ; Alves MC; Cesar CL; Malta DC Rev Bras Epidemiol; 2011 Sep; 14 Suppl 1():5-15. PubMed ID: 22002138 [TBL] [Abstract][Full Text] [Related]
19. Growing cell-phone population and noncoverage bias in traditional random digit dial telephone health surveys. Lee S; Brick JM; Brown ER; Grant D Health Serv Res; 2010 Aug; 45(4):1121-39. PubMed ID: 20500221 [TBL] [Abstract][Full Text] [Related]
20. Adjustments for non-telephone bias in random-digit-dialling surveys. Frankel MR; Srinath KP; Hoaglin DC; Battaglia MP; Smith PJ; Wright RA; Khare M Stat Med; 2003 May; 22(9):1611-26. PubMed ID: 12704619 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]