These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 24897163)
1. Protein-DNA chimeras for nano assembly. Pippig DA; Baumann F; Strackharn M; Aschenbrenner D; Gaub HE ACS Nano; 2014 Jul; 8(7):6551-5. PubMed ID: 24897163 [TBL] [Abstract][Full Text] [Related]
2. Functional immobilization and patterning of proteins by an enzymatic transfer reaction. Waichman S; Bhagawati M; Podoplelova Y; Reichel A; Brunk A; Paterok D; Piehler J Anal Chem; 2010 Feb; 82(4):1478-85. PubMed ID: 20092261 [TBL] [Abstract][Full Text] [Related]
3. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Yin J; Straight PD; McLoughlin SM; Zhou Z; Lin AJ; Golan DE; Kelleher NL; Kolter R; Walsh CT Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15815-20. PubMed ID: 16236721 [TBL] [Abstract][Full Text] [Related]
4. Solid-Phase Synthesis and Purification of Protein-DNA Origami Nanostructures. Burgahn T; Garrecht R; Rabe KS; Niemeyer CM Chemistry; 2019 Mar; 25(14):3483-3488. PubMed ID: 30609150 [TBL] [Abstract][Full Text] [Related]
5. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase. Wong LS; Thirlway J; Micklefield J J Am Chem Soc; 2008 Sep; 130(37):12456-64. PubMed ID: 18722432 [TBL] [Abstract][Full Text] [Related]
6. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Yin J; Lin AJ; Golan DE; Walsh CT Nat Protoc; 2006; 1(1):280-5. PubMed ID: 17406245 [TBL] [Abstract][Full Text] [Related]
7. DNA-free directed assembly in single-molecule cut-and-paste. Erlich KR; Sedlak SM; Jobst MA; Milles LF; Gaub HE Nanoscale; 2019 Jan; 11(2):407-411. PubMed ID: 30604815 [TBL] [Abstract][Full Text] [Related]
8. Continuous monitoring of enzymatic reactions on surfaces by real-time flow cytometry: sortase a catalyzed protein immobilization as a case study. Heck T; Pham PH; Hammes F; Thöny-Meyer L; Richter M Bioconjug Chem; 2014 Aug; 25(8):1492-500. PubMed ID: 25075751 [TBL] [Abstract][Full Text] [Related]
9. Engineering DNA self-assemblies as templates for functional nanostructures. Wang ZG; Ding B Acc Chem Res; 2014 Jun; 47(6):1654-62. PubMed ID: 24588320 [TBL] [Abstract][Full Text] [Related]
10. Maleimide photolithography for single-molecule protein-protein interaction analysis in micropatterns. Waichman S; You C; Beutel O; Bhagawati M; Piehler J Anal Chem; 2011 Jan; 83(2):501-8. PubMed ID: 21186833 [TBL] [Abstract][Full Text] [Related]
17. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. Sunbul M; Zhang K; Yin J Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986 [TBL] [Abstract][Full Text] [Related]
18. From Nano to Macro through Hierarchical Self-Assembly: The DNA Paradigm. Pfeifer W; Saccà B Chembiochem; 2016 Jun; 17(12):1063-80. PubMed ID: 27186937 [TBL] [Abstract][Full Text] [Related]
19. Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Lo PK; Metera KL; Sleiman HF Curr Opin Chem Biol; 2010 Oct; 14(5):597-607. PubMed ID: 20869905 [TBL] [Abstract][Full Text] [Related]
20. Uncovering the self-assembly of DNA nanostructures by thermodynamics and kinetics. Wei X; Nangreave J; Liu Y Acc Chem Res; 2014 Jun; 47(6):1861-70. PubMed ID: 24851996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]