BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24897378)

  • 1. Controlled localization of functionally active proteins to inclusion bodies using leucine zippers.
    Choi SL; Lee SJ; Yeom SJ; Kim HJ; Rhee YH; Jung HC; Lee SG
    PLoS One; 2014; 9(6):e97093. PubMed ID: 24897378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the use of leucine zippers for the generation of a new class of inclusion bodies for pharma and biotechnological applications.
    Roca-Pinilla R; Fortuna S; Natalello A; Sánchez-Chardi A; Ami D; Arís A; Garcia-Fruitós E
    Microb Cell Fact; 2020 Sep; 19(1):175. PubMed ID: 32887587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucine zipper-mediated targeting of multi-enzyme cascade reactions to inclusion bodies in Escherichia coli for enhanced production of 1-butanol.
    Han GH; Seong W; Fu Y; Yoon PK; Kim SK; Yeom SJ; Lee DH; Lee SG
    Metab Eng; 2017 Mar; 40():41-49. PubMed ID: 28038953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility.
    Huang Z; Zhang C; Chen S; Ye F; Xing XH
    Microb Cell Fact; 2013 Mar; 12():25. PubMed ID: 23497261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli.
    Castellanos-Mendoza A; Castro-Acosta RM; Olvera A; Zavala G; Mendoza-Vera M; García-Hernández E; Alagón A; Trujillo-Roldán MA; Valdez-Cruz NA
    Microb Cell Fact; 2014 Sep; 13():137. PubMed ID: 25213001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A variant of green fluorescent protein exclusively deposited to active intracellular inclusion bodies.
    Raghunathan G; Munussami G; Moon H; Paik HJ; An SS; Kim YS; Kang S; Lee SG
    Microb Cell Fact; 2014 May; 13():68. PubMed ID: 24885571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid Droplets Are Essential for Efficient Clearance of Cytosolic Inclusion Bodies.
    Moldavski O; Amen T; Levin-Zaidman S; Eisenstein M; Rogachev I; Brandis A; Kaganovich D; Schuldiner M
    Dev Cell; 2015 Jun; 33(5):603-10. PubMed ID: 26004510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic Ca2+ regulates protein expression in E. coli through release from inclusion bodies.
    Naseem R; Davies SR; Jones H; Wann KT; Holland IB; Campbell AK
    Biochem Biophys Res Commun; 2007 Aug; 360(1):33-9. PubMed ID: 17583677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the disaggregase ClpB in processing of proteins aggregated as inclusion bodies.
    Zblewska K; Krajewska J; Zolkiewski M; Kędzierska-Mieszkowska S
    Arch Biochem Biophys; 2014 Aug; 555-556():23-7. PubMed ID: 24943258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quality control of inclusion bodies in Escherichia coli.
    Jürgen B; Breitenstein A; Urlacher V; Büttner K; Lin H; Hecker M; Schweder T; Neubauer P
    Microb Cell Fact; 2010 May; 9():41. PubMed ID: 20509924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the Structure and Properties of Membrane Phospholipase A
    Bakholdina SI; Stenkova AM; Bystritskaya EP; Sidorin EV; Kim NY; Menchinskaya ES; Gorpenchenko TY; Aminin DL; Shved NA; Solov'eva TF
    Molecules; 2021 Jun; 26(13):. PubMed ID: 34203222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper.
    Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD
    J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.
    Wang X; Zhou B; Hu W; Zhao Q; Lin Z
    Microb Cell Fact; 2015 Jun; 14():88. PubMed ID: 26077447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of an E. coli signal sequence as a versatile inclusion body tag.
    Jong WS; Vikström D; Houben D; van den Berg van Saparoea HB; de Gier JW; Luirink J
    Microb Cell Fact; 2017 Mar; 16(1):50. PubMed ID: 28320377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coiled-coil inspired functional inclusion bodies.
    Gil-Garcia M; Navarro S; Ventura S
    Microb Cell Fact; 2020 Jun; 19(1):117. PubMed ID: 32487230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular leucine zipper interactions suggest c-Myc hetero-oligomerization.
    Dang CV; Barrett J; Villa-Garcia M; Resar LM; Kato GJ; Fearon ER
    Mol Cell Biol; 1991 Feb; 11(2):954-62. PubMed ID: 1990293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detailed small-scale characterization and scale-up of active YFP inclusion body production with Escherichia coli induced by a tetrameric coiled coil domain.
    Lamm R; Jäger VD; Heyman B; Berg C; Cürten C; Krauss U; Jaeger KE; Büchs J
    J Biosci Bioeng; 2020 Jun; 129(6):730-740. PubMed ID: 32143998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial production of maize and human serine racemases as partially active inclusion bodies for d-serine synthesis.
    Wang R; Li J; Dang D; Hu J; Hu Y; Fan J
    Enzyme Microb Technol; 2020 Jun; 137():109547. PubMed ID: 32423675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleic acids in inclusion bodies obtained from E. coli cells expressing human interferon-gamma.
    Krachmarova E; Ivanov I; Nacheva G
    Microb Cell Fact; 2020 Jul; 19(1):139. PubMed ID: 32652996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New properties of inclusion bodies with implications for biotechnology.
    Peternel S; Jevsevar S; Bele M; Gaberc-Porekar V; Menart V
    Biotechnol Appl Biochem; 2008 Apr; 49(Pt 4):239-46. PubMed ID: 17708747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.