These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 24897410)

  • 1. Finite-size effects and analytical modeling of electrostatic force microscopy applied to dielectric films.
    Gomila G; Gramse G; Fumagalli L
    Nanotechnology; 2014 Jun; 25(25):255702. PubMed ID: 24897410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced dielectric constant resolution of thin insulating films by electrostatic force microscopy.
    Castellano-Hernández E; Moreno-Llorena J; Sáenz JJ; Sacha GM
    J Phys Condens Matter; 2012 Apr; 24(15):155303. PubMed ID: 22442155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing Dielectric Permittivity of Nanoscale Dielectric Films by Electrostatic Micro-Probe Technology: Finite Element Simulations.
    Ren H; Sun WF
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31817944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The jump-into-contact effect in biased AFM probes on dielectric films and its application to quantify the dielectric permittivity of thin layers.
    Revilla RI
    Nanotechnology; 2016 Jul; 27(26):265705. PubMed ID: 27199351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical study of the lateral resolution in electrostatic force microscopy for dielectric samples.
    Riedel C; Alegría A; Schwartz GA; Colmenero J; Sáenz JJ
    Nanotechnology; 2011 Jul; 22(28):285705. PubMed ID: 21646694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantification of the dielectric constant of single non-spherical nanoparticles from polarization forces: eccentricity effects.
    Gomila G; Esteban-Ferrer D; Fumagalli L
    Nanotechnology; 2013 Dec; 24(50):505713. PubMed ID: 24284953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy.
    Gramse G; Casuso I; Toset J; Fumagalli L; Gomila G
    Nanotechnology; 2009 Sep; 20(39):395702. PubMed ID: 19724109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric and ellipsometric studies of the dynamics in thin films of isotactic poly(methylmethacrylate) with one free surface.
    Sharp JS; Forrest JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031805. PubMed ID: 12689094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interference effects in the sum frequency generation spectra of thin organic films. II: Applications to different thin-film systems.
    Tong Y; Zhao Y; Li N; Ma Y; Osawa M; Davies PB; Ye S
    J Chem Phys; 2010 Jul; 133(3):034705. PubMed ID: 20649348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interference effects in the sum frequency generation spectra of thin organic films. I. Theoretical modeling and simulation.
    Tong Y; Zhao Y; Li N; Osawa M; Davies PB; Ye S
    J Chem Phys; 2010 Jul; 133(3):034704. PubMed ID: 20649347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of film thickness on the phase separation mechanism in ultrathin conducting polymer blend films.
    Meier R; Ruderer MA; Diethert A; Kaune G; Körstgens V; Roth SV; Müller-Buschbaum P
    J Phys Chem B; 2011 Mar; 115(12):2899-909. PubMed ID: 21370827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extreme hardening of PDMS thin films due to high compressive strain and confined thickness.
    Xu W; Chahine N; Sulchek T
    Langmuir; 2011 Jul; 27(13):8470-7. PubMed ID: 21634411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast inversion in electrostatic force microscopy imaging of trapped charges: tip-sample distance and dielectric constant dependence.
    Riedel C; Alegría A; Arinero R; Colmenero J; Sáenz JJ
    Nanotechnology; 2011 Aug; 22(34):345702. PubMed ID: 21795775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement.
    Karbassi A; Ruf D; Bettermann AD; Paulson CA; van der Weide DW; Tanbakuchi H; Stancliff R
    Rev Sci Instrum; 2008 Sep; 79(9):094706. PubMed ID: 19044445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale electric polarizability of ultrathin biolayers on insulating substrates by electrostatic force microscopy.
    Dols-Perez A; Gramse G; Calò A; Gomila G; Fumagalli L
    Nanoscale; 2015 Nov; 7(43):18327-36. PubMed ID: 26488226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferroelectric behavior in bismuth ferrite thin films of different thickness.
    Wu J; Wang J; Xiao D; Zhu J
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3261-3. PubMed ID: 21861505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative electrostatic force microscopy with sharp silicon tips.
    Fumagalli L; Edwards MA; Gomila G
    Nanotechnology; 2014 Dec; 25(49):495701. PubMed ID: 25407683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical deposition of polypyrrole nanolayers on discontinuous ultrathin gold films.
    Mtsuko D; Avnon A; Lievonen J; Ahlskog M; Menon R
    Nanotechnology; 2008 Mar; 19(12):125304. PubMed ID: 21817725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale characterization of the dielectric charging phenomenon in PECVD silicon nitride thin films with various interfacial structures based on Kelvin probe force microscopy.
    Zaghloul U; Papaioannou GJ; Wang H; Bhushan B; Coccetti F; Pons P; Plana R
    Nanotechnology; 2011 May; 22(20):205708. PubMed ID: 21444948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Force Microscopy Nanomechanics of Hard Nanometer-Thick Films on Soft Substrates: Insights into Stretchable Conductors.
    Cortelli G; Patruno L; Cramer T; Murgia M; Fraboni B; de Miranda S
    ACS Appl Nano Mater; 2021 Aug; 4(8):8376-8382. PubMed ID: 34485845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.