BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 24897543)

  • 21. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interconnected hollow carbon nanospheres for stable lithium metal anodes.
    Zheng G; Lee SW; Liang Z; Lee HW; Yan K; Yao H; Wang H; Li W; Chu S; Cui Y
    Nat Nanotechnol; 2014 Aug; 9(8):618-23. PubMed ID: 25064396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced Electrochemical Performance of Fe0.74Sn5@Reduced Graphene Oxide Nanocomposite Anodes for Both Li-Ion and Na-Ion Batteries.
    Xin FX; Tian HJ; Wang XL; Xu W; Zheng WG; Han WQ
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):7912-9. PubMed ID: 25825935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity.
    Peng C; Chen B; Qin Y; Yang S; Li C; Zuo Y; Liu S; Yang J
    ACS Nano; 2012 Feb; 6(2):1074-81. PubMed ID: 22224549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries.
    Hu Z; Wang L; Zhang K; Wang J; Cheng F; Tao Z; Chen J
    Angew Chem Int Ed Engl; 2014 Nov; 53(47):12794-8. PubMed ID: 25251780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability.
    Hu T; Sun X; Sun H; Xin G; Shao D; Liu C; Lian J
    Phys Chem Chem Phys; 2014 Jan; 16(3):1060-6. PubMed ID: 24287587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Activation of Nitrogen-Doped Graphene Anchored on Graphite Foam for a High-Capacity Anode.
    Ji J; Liu J; Lai L; Zhao X; Zhen Y; Lin J; Zhu Y; Ji H; Zhang LL; Ruoff RS
    ACS Nano; 2015 Aug; 9(8):8609-16. PubMed ID: 26258909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expanded graphite as superior anode for sodium-ion batteries.
    Wen Y; He K; Zhu Y; Han F; Xu Y; Matsuda I; Ishii Y; Cumings J; Wang C
    Nat Commun; 2014 Jun; 5():4033. PubMed ID: 24893716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage.
    Liu T; Zhao Y; Gao L; Ni J
    Sci Rep; 2015 Mar; 5():9307. PubMed ID: 25798923
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NASICON-Type Mg
    Zhao Y; Wei Z; Pang Q; Wei Y; Cai Y; Fu Q; Du F; Sarapulova A; Ehrenberg H; Liu B; Chen G
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4709-4718. PubMed ID: 28098442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.
    Xiao B; Li YC; Yu XF; Cheng JB
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35342-35352. PubMed ID: 27977126
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries.
    Sun YH; Dong PP; Lang X; Chen HY; Nan JM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5880-8. PubMed ID: 26369165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.
    Yang Y; Ji X; Lu F; Chen Q; Banks CE
    Phys Chem Chem Phys; 2013 Sep; 15(36):15098-105. PubMed ID: 23925441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and electrochemical performance of hollow-structured NiO + Ni nanofibers wrapped by graphene as anodes for Li-ion batteries.
    Yuan B; Li J; Xia M; Zhang Y; Lei R; Zhao P; Li X
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33979782
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Si-Mn/reduced graphene oxide nanocomposite anodes with enhanced capacity and stability for lithium-ion batteries.
    Park AR; Kim JS; Kim KS; Zhang K; Park J; Park JH; Lee JK; Yoo PJ
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1702-8. PubMed ID: 24443772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon- and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction.
    Lee JW; Shin HS; Lee CW; Jung KN
    Nanoscale Res Lett; 2016 Dec; 11(1):45. PubMed ID: 26831683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon-Free, High-Capacity and Long Cycle Life 1D-2D NiMoO
    Li Z; Zhan X; Zhu W; Qi S; Braun PV
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44593-44600. PubMed ID: 31682756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode.
    Wang DY; Wei CY; Lin MC; Pan CJ; Chou HL; Chen HA; Gong M; Wu Y; Yuan C; Angell M; Hsieh YJ; Chen YH; Wen CY; Chen CW; Hwang BJ; Chen CC; Dai H
    Nat Commun; 2017 Feb; 8():14283. PubMed ID: 28194027
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Thermally Conductive Separator for Stable Li Metal Anodes.
    Luo W; Zhou L; Fu K; Yang Z; Wan J; Manno M; Yao Y; Zhu H; Yang B; Hu L
    Nano Lett; 2015 Sep; 15(9):6149-54. PubMed ID: 26237519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Alternative to Lithium Metal Anodes: Non-dendritic and Highly Reversible Sodium Metal Anodes for Li-Na Hybrid Batteries.
    Zhang Q; Lu Y; Miao L; Zhao Q; Xia K; Liang J; Chou SL; Chen J
    Angew Chem Int Ed Engl; 2018 Nov; 57(45):14796-14800. PubMed ID: 30203528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.