These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

510 related articles for article (PubMed ID: 24897543)

  • 41. Abnormal cyclibility in Ni@graphene core-shell and yolk-shell nanostructures for lithium ion battery anodes.
    Song H; Cui H; Wang C
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):13765-9. PubMed ID: 25004444
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon Nitride Transforms into a High Lithium Storage Capacity Nitrogen-Rich Carbon.
    Pender JP; Guerrera JV; Wygant BR; Weeks JA; Ciufo RA; Burrow JN; Walk MF; Rahman MZ; Heller A; Mullins CB
    ACS Nano; 2019 Aug; 13(8):9279-9291. PubMed ID: 31390519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries.
    Choi J; Kim K; Jeong J; Cho KY; Ryou MH; Lee YM
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14851-8. PubMed ID: 26075943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena.
    Jache B; Adelhelm P
    Angew Chem Int Ed Engl; 2014 Sep; 53(38):10169-73. PubMed ID: 25056756
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biotene: Earth-Abundant 2D Material as Sustainable Anode for Li/Na-Ion Battery.
    Pramanik A; Mahapatra PL; Tromer R; Xu J; Costin G; Li C; Saju S; Alhashim S; Pandey K; Srivastava A; Vajtai R; Galvao DS; Tiwary CS; Ajayan PM
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2417-2427. PubMed ID: 38171351
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Carbon with Expanded and Well-Developed Graphene Planes Derived Directly from Condensed Lignin as a High-Performance Anode for Sodium-Ion Batteries.
    Yoon D; Hwang J; Chang W; Kim J
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):569-581. PubMed ID: 29219295
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies.
    Zhou M; Li X; Wang B; Zhang Y; Ning J; Xiao Z; Zhang X; Chang Y; Zhi L
    Nano Lett; 2015 Sep; 15(9):6222-8. PubMed ID: 26308100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. sp-sp
    Lee S; Koo J; Park M; Lee H
    ACS Omega; 2018 Oct; 3(10):14477-14481. PubMed ID: 31458133
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Green Template-Free Synthesis of Hierarchical Shuttle-Shaped Mesoporous ZnFe2 O4 Microrods with Enhanced Lithium Storage for Advanced Li-Ion Batteries.
    Hou L; Hua H; Lian L; Cao H; Zhu S; Yuan C
    Chemistry; 2015 Sep; 21(37):13012-9. PubMed ID: 26220562
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 51. LiFe(MoO4)2 as a novel anode material for lithium-ion batteries.
    Chen N; Yao Y; Wang D; Wei Y; Bie X; Wang C; Chen G; Du F
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10661-6. PubMed ID: 24905851
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene networks anchored with sn@graphene as lithium ion battery anode.
    Qin J; He C; Zhao N; Wang Z; Shi C; Liu EZ; Li J
    ACS Nano; 2014 Feb; 8(2):1728-38. PubMed ID: 24400945
    [TBL] [Abstract][Full Text] [Related]  

  • 53. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.
    Bai Y; Wang Z; Wu C; Xu R; Wu F; Liu Y; Li H; Li Y; Lu J; Amine K
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5598-604. PubMed ID: 25692826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High-Capacity Rechargeable Li/Cl
    Zhu G; Liang P; Huang CL; Huang CC; Li YY; Wu SC; Li J; Wang F; Tian X; Huang WH; Jiang SK; Hung WH; Chen H; Lin MC; Hwang BJ; Dai H
    J Am Chem Soc; 2022 Dec; 144(49):22505-22513. PubMed ID: 36450002
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Photothermally reduced graphene as high-power anodes for lithium-ion batteries.
    Mukherjee R; Thomas AV; Krishnamurthy A; Koratkar N
    ACS Nano; 2012 Sep; 6(9):7867-78. PubMed ID: 22881216
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-dimensional MoS2 hierarchical nanoarchitectures anchored into a carbon layer as graphene analogues with improved lithium ion storage performance.
    Zhao X; Hu C; Cao M
    Chem Asian J; 2013 Nov; 8(11):2701-7. PubMed ID: 23946108
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities.
    Zou Y; Wang Y
    ACS Nano; 2011 Oct; 5(10):8108-14. PubMed ID: 21939228
    [TBL] [Abstract][Full Text] [Related]  

  • 60. New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.
    Kim JK; Senthilkumar B; Sahgong SH; Kim JH; Chi M; Kim Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7025-32. PubMed ID: 25768692
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.