These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 24897925)
1. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum). Windisch HS; Frickenhaus S; John U; Knust R; Pörtner HO; Lucassen M Mol Ecol; 2014 Jul; 23(14):3469-82. PubMed ID: 24897925 [TBL] [Abstract][Full Text] [Related]
2. Thermal acclimation in Antarctic fish: transcriptomic profiling of metabolic pathways. Windisch HS; Kathöver R; Pörtner HO; Frickenhaus S; Lucassen M Am J Physiol Regul Integr Comp Physiol; 2011 Nov; 301(5):R1453-66. PubMed ID: 21865546 [TBL] [Abstract][Full Text] [Related]
3. Temperature-dependent protein synthesis capacities in Antarctic and temperate (North Sea) fish (Zoarcidae). Storch D; Lannig G; Pörtner HO J Exp Biol; 2005 Jun; 208(Pt 12):2409-20. PubMed ID: 15939780 [TBL] [Abstract][Full Text] [Related]
4. Temperature-dependent expression of cytochrome-c oxidase in Antarctic and temperate fish. Hardewig I; van Dijk PL; Moyes CD; Pörtner HO Am J Physiol; 1999 Aug; 277(2):R508-16. PubMed ID: 10444558 [TBL] [Abstract][Full Text] [Related]
5. Transcription profiling of acute temperature stress in the Antarctic plunderfish Harpagifer antarcticus. Thorne MA; Burns G; Fraser KP; Hillyard G; Clark MS Mar Genomics; 2010 Mar; 3(1):35-44. PubMed ID: 21798195 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary Adaptation of Protein Turnover in White Muscle of Stenothermal Antarctic Fish: Elevated Cold Compensation at Reduced Thermal Responsiveness. Krebs N; Bock C; Tebben J; Mark FC; Lucassen M; Lannig G; Pörtner HO Biomolecules; 2023 Oct; 13(10):. PubMed ID: 37892189 [TBL] [Abstract][Full Text] [Related]
7. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki. Bilyk KT; Cheng CH Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838 [TBL] [Abstract][Full Text] [Related]
8. Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii. Strobel A; Leo E; Pörtner HO; Mark FC Comp Biochem Physiol B Biochem Mol Biol; 2013 Sep; 166(1):48-57. PubMed ID: 23827663 [TBL] [Abstract][Full Text] [Related]
9. Changes in extreme cold tolerance, membrane composition and cardiac transcriptome during the first day of thermal acclimation in the porcelain crab Petrolisthes cinctipes. Ronges D; Walsh JP; Sinclair BJ; Stillman JH J Exp Biol; 2012 Jun; 215(Pt 11):1824-36. PubMed ID: 22573761 [TBL] [Abstract][Full Text] [Related]
10. Next-generation transcriptome profiling reveals insights into genetic factors contributing to growth differences and temperature adaptation in Australian populations of barramundi (Lates calcarifer). Newton JR; Zenger KR; Jerry DR Mar Genomics; 2013 Sep; 11():45-52. PubMed ID: 23948424 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors. Huth TJ; Place SP BMC Genomics; 2016 Feb; 17():127. PubMed ID: 26897172 [TBL] [Abstract][Full Text] [Related]
12. Linking transcriptional responses to organismal tolerance reveals mechanisms of thermal sensitivity in a mesothermal endangered fish. Komoroske LM; Connon RE; Jeffries KM; Fangue NA Mol Ecol; 2015 Oct; 24(19):4960-81. PubMed ID: 26339983 [TBL] [Abstract][Full Text] [Related]
13. Effects of seasonal and latitudinal cold on oxidative stress parameters and activation of hypoxia inducible factor (HIF-1) in zoarcid fish. Heise K; Estevez MS; Puntarulo S; Galleano M; Nikinmaa M; Pörtner HO; Abele D J Comp Physiol B; 2007 Oct; 177(7):765-77. PubMed ID: 17579869 [TBL] [Abstract][Full Text] [Related]
14. Antarctic fish can compensate for rising temperatures: thermal acclimation of cardiac performance in Pagothenia borchgrevinki. Franklin CE; Davison W; Seebacher F J Exp Biol; 2007 Sep; 210(Pt 17):3068-74. PubMed ID: 17704081 [TBL] [Abstract][Full Text] [Related]
15. Acclimation and thermal tolerance in Antarctic marine ectotherms. Peck LS; Morley SA; Richard J; Clark MS J Exp Biol; 2014 Jan; 217(Pt 1):16-22. PubMed ID: 24353200 [TBL] [Abstract][Full Text] [Related]
16. Thermal sensitivity of uncoupling protein expression in polar and temperate fish. Mark FC; Lucassen M; Pörtner HO Comp Biochem Physiol Part D Genomics Proteomics; 2006 Sep; 1(3):365-74. PubMed ID: 20483268 [TBL] [Abstract][Full Text] [Related]
17. Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. Podrabsky JE; Somero GN J Exp Biol; 2004 Jun; 207(Pt 13):2237-54. PubMed ID: 15159429 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial proliferation in the permanent vs. temporary cold: enzyme activities and mRNA levels in Antarctic and temperate zoarcid fish. Lucassen M; Schmidt A; Eckerle LG; Pörtner HO Am J Physiol Regul Integr Comp Physiol; 2003 Dec; 285(6):R1410-20. PubMed ID: 12907412 [TBL] [Abstract][Full Text] [Related]
19. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback. Teigen LE; Orczewska JI; McLaughlin J; O'Brien KM Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():139-47. PubMed ID: 26123780 [TBL] [Abstract][Full Text] [Related]
20. Effects of thermal acclimation on transcriptional responses to acute heat stress in the eurythermal fish Gillichthys mirabilis (Cooper). Logan CA; Somero GN Am J Physiol Regul Integr Comp Physiol; 2011 Jun; 300(6):R1373-83. PubMed ID: 21411771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]