BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

888 related articles for article (PubMed ID: 24897931)

  • 21. Oncogenic signaling of class I PI3K isoforms.
    Denley A; Kang S; Karst U; Vogt PK
    Oncogene; 2008 Apr; 27(18):2561-74. PubMed ID: 17998941
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeting AKT/PKB to improve treatment outcomes for solid tumors.
    Iida M; Harari PM; Wheeler DL; Toulany M
    Mutat Res; 2020; 819-820():111690. PubMed ID: 32120136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent patents of gene sequences relative to the phosphatidylinositol 3-kinase/Akt pathway and their relevance to drug discovery.
    Doepfner KT; Boller D; De Laurentiis A; Guerreiro AS; Marinov M; Arcaro A
    Recent Pat DNA Gene Seq; 2007; 1(1):9-23. PubMed ID: 19075915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway.
    Marzec M; Kasprzycka M; Liu X; El-Salem M; Halasa K; Raghunath PN; Bucki R; Wlodarski P; Wasik MA
    Oncogene; 2007 Aug; 26(38):5606-14. PubMed ID: 17353907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosstalk between hedgehog and other signaling pathways as a basis for combination therapies in cancer.
    Brechbiel J; Miller-Moslin K; Adjei AA
    Cancer Treat Rev; 2014 Jul; 40(6):750-9. PubMed ID: 24613036
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways.
    McCubrey JA; Steelman LS; Kempf CR; Chappell WH; Abrams SL; Stivala F; Malaponte G; Nicoletti F; Libra M; Bäsecke J; Maksimovic-Ivanic D; Mijatovic S; Montalto G; Cervello M; Cocco L; Martelli AM
    J Cell Physiol; 2011 Nov; 226(11):2762-81. PubMed ID: 21302297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Activation of RAF/MEK/ERK and PI3K/AKT/mTOR pathways in pituitary adenomas and their effects on downstream effectors.
    Dworakowska D; Wlodek E; Leontiou CA; Igreja S; Cakir M; Teng M; Prodromou N; Góth MI; Grozinsky-Glasberg S; Gueorguiev M; Kola B; Korbonits M; Grossman AB
    Endocr Relat Cancer; 2009 Dec; 16(4):1329-38. PubMed ID: 19620247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [PI3K-AKT-mTOR pathway inhibitors].
    Cortot A; Armand JP; Soria JC
    Bull Cancer; 2006 Jan; 93(1):19-26. PubMed ID: 16455502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phosphatidylinositol Phosphate 5-Kinase Iγ and Phosphoinositide 3-Kinase/Akt Signaling Couple to Promote Oncogenic Growth.
    Thapa N; Choi S; Tan X; Wise T; Anderson RA
    J Biol Chem; 2015 Jul; 290(30):18843-54. PubMed ID: 26070568
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Signaling interplay between transforming growth factor-β receptor and PI3K/AKT pathways in cancer.
    Zhang L; Zhou F; ten Dijke P
    Trends Biochem Sci; 2013 Dec; 38(12):612-20. PubMed ID: 24239264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer.
    Bitting RL; Armstrong AJ
    Endocr Relat Cancer; 2013 Jun; 20(3):R83-99. PubMed ID: 23456430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeting PI3K-AKT pathway for cancer therapy.
    Lu Y; Wang H; Mills GB
    Rev Clin Exp Hematol; 2003 Jun; 7(2):205-28. PubMed ID: 14763163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations in FGFR3 and PIK3CA, singly or combined with RAS and AKT1, are associated with AKT but not with MAPK pathway activation in urothelial bladder cancer.
    Juanpere N; Agell L; Lorenzo M; de Muga S; López-Vilaró L; Murillo R; Mojal S; Serrano S; Lorente JA; Lloreta J; Hernández S
    Hum Pathol; 2012 Oct; 43(10):1573-82. PubMed ID: 22417847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Targeting PI3-kinase (PI3K), AKT and mTOR axis in lymphoma.
    Blachly JS; Baiocchi RA
    Br J Haematol; 2014 Oct; 167(1):19-32. PubMed ID: 25100567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. PI3K/Akt/mTOR pathway inhibitors in the therapy of pancreatic neuroendocrine tumors.
    Wolin EM
    Cancer Lett; 2013 Jul; 335(1):1-8. PubMed ID: 23419523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms of disease: PI3K/AKT signaling in gastrointestinal cancers.
    Michl P; Downward J
    Z Gastroenterol; 2005 Oct; 43(10):1133-9. PubMed ID: 16220453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulated PI3K-AKT signaling mediated through ligand or radiation-induced EGFR depends indirectly, but not directly, on constitutive K-Ras activity.
    Toulany M; Baumann M; Rodemann HP
    Mol Cancer Res; 2007 Aug; 5(8):863-72. PubMed ID: 17699110
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The essential role of phosphoinositide 3-kinases (PI3Ks) in regulating pro-inflammatory responses and the progression of cancer.
    Chen K; Iribarren P; Gong W; Wang JM
    Cell Mol Immunol; 2005 Aug; 2(4):241-52. PubMed ID: 16274621
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implication of PI3K/Akt pathway in pancreatic cancer: When PI3K isoforms matter?
    Baer R; Cintas C; Therville N; Guillermet-Guibert J
    Adv Biol Regul; 2015 Sep; 59():19-35. PubMed ID: 26166735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphoinositide 3-kinase signaling pathway mediated by p110α regulates invadopodia formation.
    Yamaguchi H; Yoshida S; Muroi E; Yoshida N; Kawamura M; Kouchi Z; Nakamura Y; Sakai R; Fukami K
    J Cell Biol; 2011 Jun; 193(7):1275-88. PubMed ID: 21708979
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.