These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24898188)

  • 1. Biomimetic polymers responsive to a biological signaling molecule: nitric oxide triggered reversible self-assembly of single macromolecular chains into nanoparticles.
    Hu J; Whittaker MR; Duong H; Li Y; Boyer C; Davis TP
    Angew Chem Int Ed Engl; 2014 Jul; 53(30):7779-84. PubMed ID: 24898188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic polymers responsive to a biological signaling molecule: Nitric oxide (NO) triggered reversible self-assembly of single macromolecular chains into nanoparticles.
    Hu J; Whittaker MR; Duong H; Li Y; Boyer C; Davis TP
    J Control Release; 2015 Sep; 213():e55-6. PubMed ID: 27005189
    [No Abstract]   [Full Text] [Related]  

  • 3. Stimulus-Responsive Nanoparticles and Associated (Reversible) Polymorphism via Polymerization Induced Self-assembly (PISA).
    Pei Y; Lowe AB; Roth PJ
    Macromol Rapid Commun; 2017 Jan; 38(1):. PubMed ID: 27900822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermally reversible self-assembly of nanoparticles via polymer crystallization.
    Kinnear C; Balog S; Rothen-Rutishauser B; Petri-Fink A
    Macromol Rapid Commun; 2014 Dec; 35(23):2012-7. PubMed ID: 25315899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual redox and thermoresponsive double hydrophilic block copolymers with tunable thermoresponsive properties and self-assembly behavior.
    Chan N; An SY; Yee N; Oh JK
    Macromol Rapid Commun; 2014 Apr; 35(7):752-7. PubMed ID: 24497107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced fluorescence activation and nitric oxide release with biocompatible polymer nanoparticles.
    Deniz E; Kandoth N; Fraix A; Cardile V; Graziano AC; Lo Furno D; Gref R; Raymo FM; Sortino S
    Chemistry; 2012 Dec; 18(49):15782-7. PubMed ID: 23108978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic materials and micropatterned structures using iniferters.
    Peppas NA; Ward JH
    Adv Drug Deliv Rev; 2004 Sep; 56(11):1587-97. PubMed ID: 15350290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular polymerization from polypeptide-grafted comb polymers.
    Wang J; Lu H; Kamat R; Pingali SV; Urban VS; Cheng J; Lin Y
    J Am Chem Soc; 2011 Aug; 133(33):12906-9. PubMed ID: 21761879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers.
    Nie Z; Fava D; Kumacheva E; Zou S; Walker GC; Rubinstein M
    Nat Mater; 2007 Aug; 6(8):609-14. PubMed ID: 17618291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, synthesis, and miniemulsion polymerization of new phosphonate surfmers and application studies of the resulting nanoparticles as model systems for biomimetic mineralization and cellular uptake.
    Sauer R; Froimowicz P; Schöller K; Cramer JM; Ritz S; Mailänder V; Landfester K
    Chemistry; 2012 Apr; 18(17):5201-12. PubMed ID: 22461235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation of inorganic nanoparticles mediated by biomimetic oligomers.
    Tigger-Zaborov H; Maayan G
    Org Biomol Chem; 2015 Sep; 13(34):8978-92. PubMed ID: 26222802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers.
    Bauri K; Roy SG; Pant S; De P
    Langmuir; 2013 Feb; 29(8):2764-74. PubMed ID: 23346856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine tuning the disassembly time of thermoresponsive polymer nanoparticles.
    Tran NT; Jia Z; Truong NP; Cooper MA; Monteiro MJ
    Biomacromolecules; 2013 Oct; 14(10):3463-71. PubMed ID: 24032408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymersomes from dual responsive block copolymers: drug encapsulation by heating and acid-triggered release.
    Qiao ZY; Ji R; Huang XN; Du FS; Zhang R; Liang DH; Li ZC
    Biomacromolecules; 2013 May; 14(5):1555-63. PubMed ID: 23570500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Macromolecular self-assembly and nanotechnology in China.
    Xu H; Chen D; Wang S; Zhou Y; Sun J; Zhang W; Zhang X
    Philos Trans A Math Phys Eng Sci; 2013 Oct; 371(2000):20120305. PubMed ID: 24000357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobaltocenium-containing block copolymers: ring-opening metathesis polymerization, self-assembly and precursors for template synthesis of inorganic nanoparticles.
    Ren L; Zhang J; Hardy CG; Ma S; Tang C
    Macromol Rapid Commun; 2012 Apr; 33(6-7):510-6. PubMed ID: 22252886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembly of polypeptide-based copolymers into diverse aggregates.
    Cai C; Wang L; Lin J
    Chem Commun (Camb); 2011 Oct; 47(40):11189-203. PubMed ID: 21789317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzyme-responsive polymeric assemblies, nanoparticles and hydrogels.
    Hu J; Zhang G; Liu S
    Chem Soc Rev; 2012 Sep; 41(18):5933-49. PubMed ID: 22695880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphing hydrogel patterns by thermo-reversible fluorescence switching.
    Bat E; Lin EW; Saxer S; Maynard HD
    Macromol Rapid Commun; 2014 Jul; 35(14):1260-5. PubMed ID: 24740924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled Fluorescent Nanoparticles with Tunable LCST Behavior in Water.
    Xiao T; Ren D; Diao K; Wang J; Li ZY; Sun XQ; Wang L
    Chem Asian J; 2022 Jul; 17(14):e202200386. PubMed ID: 35581147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.