BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 24898203)

  • 1. Phenotypic consequences of LYS4 gene disruption in Candida albicans.
    Gabriel I; Kur K; Laforce-Nesbitt SS; Pulickal AS; Bliss JM; Milewski S
    Yeast; 2014 Aug; 31(8):299-308. PubMed ID: 24898203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence.
    Kur K; Gabriel I; Morschhäuser J; Barchiesi F; Spreghini E; Milewski S
    Mycopathologia; 2010 Dec; 170(6):397-402. PubMed ID: 20571912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida albicans SET1 encodes a histone 3 lysine 4 methyltransferase that contributes to the pathogenesis of invasive candidiasis.
    Raman SB; Nguyen MH; Zhang Z; Cheng S; Jia HY; Weisner N; Iczkowski K; Clancy CJ
    Mol Microbiol; 2006 May; 60(3):697-709. PubMed ID: 16629671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Corneal virulence of Candida albicans strains deficient in Tup1-regulated genes.
    Jackson BE; Mitchell BM; Wilhelmus KR
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2535-9. PubMed ID: 17525181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans strain-dependent virulence and Rim13p-mediated filamentation in experimental keratomycosis.
    Mitchell BM; Wu TG; Jackson BE; Wilhelmus KR
    Invest Ophthalmol Vis Sci; 2007 Feb; 48(2):774-80. PubMed ID: 17251477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans.
    Umeyama T; Kaneko A; Watanabe H; Hirai A; Uehara Y; Niimi M; Azuma M
    Infect Immun; 2006 Apr; 74(4):2373-81. PubMed ID: 16552067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth.
    Hayek P; Dib L; Yazbeck P; Beyrouthy B; Khalaf RA
    Microbiol Res; 2010 Mar; 165(3):250-8. PubMed ID: 19616419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SKN7 of Candida albicans: mutant construction and phenotype analysis.
    Singh P; Chauhan N; Ghosh A; Dixon F; Calderone R
    Infect Immun; 2004 Apr; 72(4):2390-4. PubMed ID: 15039366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Candida albicans Sfl2, a temperature-induced transcriptional regulator, is required for virulence in a murine gastrointestinal infection model.
    Song W; Wang H; Chen J
    FEMS Yeast Res; 2011 Mar; 11(2):209-22. PubMed ID: 21205158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of the GPI protein-encoding gene IFF4 of Candida albicans results in decreased adherence and virulence.
    Kempf M; Cottin J; Licznar P; Lefrançois C; Robert R; Apaire-Marchais V
    Mycopathologia; 2009 Aug; 168(2):73-7. PubMed ID: 19347602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRZ1, a target of the calcineurin pathway in Candida albicans.
    Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D
    Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1.
    Gale CA; Bendel CM; McClellan M; Hauser M; Becker JM; Berman J; Hostetter MK
    Science; 1998 Feb; 279(5355):1355-8. PubMed ID: 9478896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans.
    Navarathna DH; Hornby JM; Krishnan N; Parkhurst A; Duhamel GE; Nickerson KW
    Infect Immun; 2007 Apr; 75(4):1609-18. PubMed ID: 17283095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo.
    Mukherjee PK; Seshan KR; Leidich SD; Chandra J; Cole GT; Ghannoum MA
    Microbiology (Reading); 2001 Sep; 147(Pt 9):2585-2597. PubMed ID: 11535799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase 8 affects the pathogenesis of Candida albicans.
    Gácser A; Stehr F; Kröger C; Kredics L; Schäfer W; Nosanchuk JD
    Infect Immun; 2007 Oct; 75(10):4710-8. PubMed ID: 17646357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consequences of lysine auxotrophy for Candida albicans adherence and biofilm formation.
    Gabriel I; Rychłowski M
    Acta Biochim Pol; 2017; 64(2):323-329. PubMed ID: 28376133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of Candida albicans genes whose Saccharomyces cerevisiae homologues are involved in endocytosis.
    Martin R; Hellwig D; Schaub Y; Bauer J; Walther A; Wendland J
    Yeast; 2007 Jun; 24(6):511-22. PubMed ID: 17431925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of the intestinal mucosal barrier in Candida albicans infections.
    Yan L; Yang C; Tang J
    Microbiol Res; 2013 Aug; 168(7):389-95. PubMed ID: 23545353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of strain variation in virulence of Candida dubliniensis and Candida albicans: results of a blinded histopathological study of invasive candidiasis.
    Asmundsdóttir LR; Erlendsdóttir H; Agnarsson BA; Gottfredsson M
    Clin Microbiol Infect; 2009 Jun; 15(6):576-85. PubMed ID: 19604278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel role of the vacuolar calcium channel Yvc1 in stress response, morphogenesis and pathogenicity of Candida albicans.
    Yu Q; Wang F; Zhao Q; Chen J; Zhang B; Ding X; Wang H; Yang B; Lu G; Zhang B; Li M
    Int J Med Microbiol; 2014 May; 304(3-4):339-50. PubMed ID: 24368068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.