BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 24898253)

  • 1. Mice deficient in the putative phospholipid flippase ATP11C exhibit altered erythrocyte shape, anemia, and reduced erythrocyte life span.
    Yabas M; Coupland LA; Cromer D; Winterberg M; Teoh NC; D'Rozario J; Kirk K; Bröer S; Parish CR; Enders A
    J Biol Chem; 2014 Jul; 289(28):19531-7. PubMed ID: 24898253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP11C T418N, a gene mutation causing congenital hemolytic anemia, reduces flippase activity due to improper membrane trafficking.
    Arashiki N; Niitsuma K; Seki M; Takakuwa Y; Nakamura F
    Biochem Biophys Res Commun; 2019 Aug; 516(3):705-712. PubMed ID: 31253392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and functional analyses of disease-associated P4-ATPase phospholipid flippase variants in red blood cells.
    Liou AY; Molday LL; Wang J; Andersen JP; Molday RS
    J Biol Chem; 2019 Apr; 294(17):6809-6821. PubMed ID: 30850395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel missense variant in ATP11C is associated with reduced red blood cell phosphatidylserine flippase activity and mild hereditary hemolytic anemia.
    van Dijk MJ; van Oirschot BA; Harrison AN; Recktenwald SM; Qiao M; Stommen A; Cloos AS; Vanderroost J; Terrasi R; Dey K; Bos J; Rab MAE; Bogdanova A; Minetti G; Muccioli GG; Tyteca D; Egée S; Kaestner L; Molday RS; van Beers EJ; van Wijk R
    Am J Hematol; 2023 Dec; 98(12):1877-1887. PubMed ID: 37671681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP11C is a major flippase in human erythrocytes and its defect causes congenital hemolytic anemia.
    Arashiki N; Takakuwa Y; Mohandas N; Hale J; Yoshida K; Ogura H; Utsugisawa T; Ohga S; Miyano S; Ogawa S; Kojima S; Kanno H
    Haematologica; 2016 May; 101(5):559-65. PubMed ID: 26944472
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red cell membrane disorders.
    Narla J; Mohandas N
    Int J Lab Hematol; 2017 May; 39 Suppl 1():47-52. PubMed ID: 28447420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rh-null phenotype and stomatocytosis.
    Göttgens EL; Ligthart PC; Veldhuisen B; Veldthuis M; de Haas M; van Gammeren AJ
    Br J Haematol; 2021 Sep; 194(5):803. PubMed ID: 33901315
    [No Abstract]   [Full Text] [Related]  

  • 8. Previously misdiagnosed red cell membrane disorder and familial consequences.
    Gérard D; Bourin S; Phulpin A; Picard V; Steschenko D; Perrin J
    Br J Haematol; 2020 Sep; 190(6):810. PubMed ID: 32510597
    [No Abstract]   [Full Text] [Related]  

  • 9. Phospholipid flippase activities and substrate specificities of human type IV P-type ATPases localized to the plasma membrane.
    Takatsu H; Tanaka G; Segawa K; Suzuki J; Nagata S; Nakayama K; Shin HW
    J Biol Chem; 2014 Nov; 289(48):33543-56. PubMed ID: 25315773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATP11C Facilitates Phospholipid Translocation across the Plasma Membrane of All Leukocytes.
    Yabas M; Jing W; Shafik S; Bröer S; Enders A
    PLoS One; 2016; 11(1):e0146774. PubMed ID: 26799398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: implications for erythrocyte functions.
    Arashiki N; Takakuwa Y
    Curr Opin Hematol; 2017 May; 24(3):167-172. PubMed ID: 28118222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-EM of the ATP11C flippase reconstituted in Nanodiscs shows a distended phospholipid bilayer inner membrane around transmembrane helix 2.
    Nakanishi H; Hayashida K; Nishizawa T; Oshima A; Abe K
    J Biol Chem; 2022 Jan; 298(1):101498. PubMed ID: 34922944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduction in flippase activity contributes to surface presentation of phosphatidylserine in human senescent erythrocytes.
    Seki M; Arashiki N; Takakuwa Y; Nitta K; Nakamura F
    J Cell Mol Med; 2020 Dec; 24(23):13991-14000. PubMed ID: 33103382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phospholipid flippases enable precursor B cells to flee engulfment by macrophages.
    Segawa K; Yanagihashi Y; Yamada K; Suzuki C; Uchiyama Y; Nagata S
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12212-12217. PubMed ID: 30355768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The CDC50A extracellular domain is required for forming a functional complex with and chaperoning phospholipid flippases to the plasma membrane.
    Segawa K; Kurata S; Nagata S
    J Biol Chem; 2018 Feb; 293(6):2172-2182. PubMed ID: 29276178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Unrecognized Function of Cholesterol: Regulating the Mechanism Controlling Membrane Phospholipid Asymmetry.
    Arashiki N; Saito M; Koshino I; Kamata K; Hale J; Mohandas N; Manno S; Takakuwa Y
    Biochemistry; 2016 Jun; 55(25):3504-3513. PubMed ID: 27267274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stomatocytosis is absent in "stomatin"-deficient murine red blood cells.
    Zhu Y; Paszty C; Turetsky T; Tsai S; Kuypers FA; Lee G; Cooper P; Gallagher PG; Stevens ME; Rubin E; Mohandas N; Mentzer WC
    Blood; 1999 Apr; 93(7):2404-10. PubMed ID: 10090952
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
    Nakanishi H; Nishizawa T; Segawa K; Nureki O; Fujiyoshi Y; Nagata S; Abe K
    Cell Rep; 2020 Sep; 32(13):108208. PubMed ID: 32997992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sitosterolemia's stomatocytosis and macrothrombocytopenia.
    Neff AT
    Blood; 2012 Nov; 120(22):4283. PubMed ID: 23310983
    [No Abstract]   [Full Text] [Related]  

  • 20. Expression of three P4-phospholipid flippases-atp11a, atp11b, and atp11c in zebrafish (Danio rerio).
    Hawkey-Noble A; Umali J; Fowler G; French CR
    Gene Expr Patterns; 2020 Jun; 36():119115. PubMed ID: 32344036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.