These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24898345)

  • 21. Interfacing conjugated polymers with magnetic nanowires.
    Callegari V; Demoustier-Champagne S
    ACS Appl Mater Interfaces; 2010 May; 2(5):1369-76. PubMed ID: 20405868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Facile synthesis of poly(3,4-ethylenedioxythiophene) film via solid-state polymerization as high-performance Pt-free counter electrodes for plastic dye-sensitized solar cells.
    Yin X; Wu F; Fu N; Han J; Chen D; Xu P; He M; Lin Y
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8423-9. PubMed ID: 23927540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical/Light-Powered Hybrid Micromotors with "On-the-Fly" Optical Brakes.
    Chen C; Tang S; Teymourian H; Karshalev E; Zhang F; Li J; Mou F; Liang Y; Guan J; Wang J
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8110-8114. PubMed ID: 29737003
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters.
    Zhao G; Sanchez S; Schmidt OG; Pumera M
    Nanoscale; 2013 Apr; 5(7):2909-14. PubMed ID: 23450281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Organized self-assembly of Janus micromotors with hydrophobic hemispheres.
    Gao W; Pei A; Feng X; Hennessy C; Wang J
    J Am Chem Soc; 2013 Jan; 135(3):998-1001. PubMed ID: 23286304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tissue cell assisted fabrication of tubular catalytic platinum microengines.
    Wang H; Moo JG; Pumera M
    Nanoscale; 2014 Oct; 6(19):11359-63. PubMed ID: 25143056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen-bubble-propelled zinc-based microrockets in strongly acidic media.
    Gao W; Uygun A; Wang J
    J Am Chem Soc; 2012 Jan; 134(2):897-900. PubMed ID: 22188367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conducting polymer composite materials for hydrogen generation.
    Winther-Jensen B; Fraser K; Ong C; Forsyth M; MacFarlane DR
    Adv Mater; 2010 Apr; 22(15):1727-30. PubMed ID: 20496404
    [No Abstract]   [Full Text] [Related]  

  • 29. Biomolecule-doped PEDOT with three-dimensional nanostructures as efficient catalyst for oxygen reduction reaction.
    Guo Z; Liu H; Jiang C; Zhu Y; Wan M; Dai L; Jiang L
    Small; 2014 May; 10(10):2087-95. PubMed ID: 24585690
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Controlling the size and composition of nanosized Pt-Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction.
    Choi SI; Xie S; Shao M; Lu N; Guerrero S; Odell JH; Park J; Wang J; Kim MJ; Xia Y
    ChemSusChem; 2014 May; 7(5):1476-83. PubMed ID: 24644079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bubble-Propelled Jellyfish-like Micromotors for DNA Sensing.
    Zhang X; Chen C; Wu J; Ju H
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13581-13588. PubMed ID: 30888785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines.
    Wang H; Zhao G; Pumera M
    Phys Chem Chem Phys; 2013 Oct; 15(40):17277-80. PubMed ID: 24019060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Force to Be Reckoned With: A Review of Synthetic Microswimmers Powered by Ultrasound.
    Rao KJ; Li F; Meng L; Zheng H; Cai F; Wang W
    Small; 2015 Jun; 11(24):2836-46. PubMed ID: 25851515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Catalytically propelled micro-/nanomotors: how fast can they move?
    Gao W; Sattayasamitsathit S; Wang J
    Chem Rec; 2012 Feb; 12(1):224-31. PubMed ID: 22162283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines.
    Mei Y; Solovev AA; Sanchez S; Schmidt OG
    Chem Soc Rev; 2011 May; 40(5):2109-19. PubMed ID: 21340080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-Component TiO2 Tubular Microengines with Motion Controlled by Light-Induced Bubbles.
    Mou F; Li Y; Chen C; Li W; Yin Y; Ma H; Guan J
    Small; 2015 Jun; 11(21):2564-70. PubMed ID: 25627213
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.
    Dong R; Zhang Q; Gao W; Pei A; Ren B
    ACS Nano; 2016 Jan; 10(1):839-44. PubMed ID: 26592971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bubble-propelled micromotors for enhanced transport of passive tracers.
    Orozco J; Jurado-Sánchez B; Wagner G; Gao W; Vazquez-Duhalt R; Sattayasamitsathit S; Galarnyk M; Cortés A; Saintillan D; Wang J
    Langmuir; 2014 May; 30(18):5082-7. PubMed ID: 24754608
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial isolation by lectin-modified microengines.
    Campuzano S; Orozco J; Kagan D; Guix M; Gao W; Sattayasamitsathit S; Claussen JC; Merkoçi A; Wang J
    Nano Lett; 2012 Jan; 12(1):396-401. PubMed ID: 22136558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(3,4-ethylenedioxythiophene)-modified Ni/silicon microchannel plate electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid.
    Yu S; Luo C; Wang L; Peng H; Zhu Z
    Analyst; 2013 Feb; 138(4):1149-55. PubMed ID: 23282767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.