BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24898868)

  • 1. Design and evaluation of a prototype gait orthosis for early rehabilitation of walking.
    Fang J; Vuckovic A; Galen S; Cossar C; Conway BA; Hunt KJ
    Technol Health Care; 2014 Jan; 22(2):273-88. PubMed ID: 24898868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of supine stepping for early rehabilitation of walking.
    Fang J; Galen S; Vuckovic A; Conway BA; Hunt KJ
    Proc Inst Mech Eng H; 2014 May; 228(5):456-464. PubMed ID: 24424356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic modelling of a robotic gait device for early rehabilitation of walking.
    Fang J; Gollee H; Galen S; Allan DB; Conway BA; Vuckovic A
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1177-87. PubMed ID: 22320057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical stimulation of the foot sole in a supine position for ground reaction force simulation.
    Fang J; Vuckovic A; Galen S; Conway BA; Hunt KJ
    J Neuroeng Rehabil; 2014 Nov; 11():159. PubMed ID: 25432580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-assisted walking vs overground walking in stroke patients: an evaluation of muscle activity.
    Coenen P; van Werven G; van Nunen MP; Van Dieën JH; Gerrits KH; Janssen TW
    J Rehabil Med; 2012 Apr; 44(4):331-7. PubMed ID: 22453772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an automatic rotational orthosis for walking with arm swing.
    Fang J; Yang GY; Xie L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():264-269. PubMed ID: 28813829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Foot trajectory approximation using the pendulum model of walking.
    Fang J; Vuckovic A; Galen S; Conway BA; Hunt KJ
    Med Biol Eng Comput; 2014 Jan; 52(1):45-52. PubMed ID: 24057114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the amount of body weight support on lower limb joints' kinematics during treadmill walking at different gait speeds: Reference data on healthy adults to define trajectories for robot assistance.
    Ferrarin M; Rabuffetti M; Geda E; Sirolli S; Marzegan A; Bruno V; Sacco K
    Proc Inst Mech Eng H; 2018 Jun; 232(6):619-627. PubMed ID: 29890931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait mode recognition and control for a portable-powered ankle-foot orthosis.
    David Li Y; Hsiao-Wecksler ET
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650373. PubMed ID: 24187192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of a knee ankle foot orthosis incorporating an active knee mechanism on gait of a person with poliomyelitis.
    Arazpour M; Chitsazan A; Bani MA; Rouhi G; Ghomshe FT; Hutchins SW
    Prosthet Orthot Int; 2013 Oct; 37(5):411-4. PubMed ID: 23327836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot-assisted gait training in patients with Parkinson disease: a randomized controlled trial.
    Picelli A; Melotti C; Origano F; Waldner A; Fiaschi A; Santilli V; Smania N
    Neurorehabil Neural Repair; 2012 May; 26(4):353-61. PubMed ID: 22258155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of powered gait orthosis on walking in individuals with paraplegia.
    Arazpour M; Ahmadi Bani M; Kashani RV; Tabatabai Ghomshe F; Mousavi ME; Hutchins SW
    Prosthet Orthot Int; 2013 Aug; 37(4):261-7. PubMed ID: 23172910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary development and technical evaluation of a belt-actuated robotic rehabilitation platform.
    Fang J; Schuwey A; Stocker N; Pedrini B; Sampaio A; Hunt KJ
    Technol Health Care; 2021; 29(3):595-607. PubMed ID: 32741796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronized walking coordination for impact-less footpad contact of an overground gait rehabilitation system: NaTUre-gaits.
    Wang P; Low KH; Tow A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975353. PubMed ID: 22275557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alterations in muscle activation patterns during robotic-assisted walking.
    Hidler JM; Wall AE
    Clin Biomech (Bristol, Avon); 2005 Feb; 20(2):184-93. PubMed ID: 15621324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of orthotic gait training with powered hip orthosis on walking in paraplegic patients.
    Arazpour M; Bani MA; Hutchins SW; Curran S; Javanshir MA; Mousavi ME
    Disabil Rehabil Assist Technol; 2014 May; 9(3):226-30. PubMed ID: 24749556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gait evaluation of a novel hip constraint orthosis with implication for walking in paraplegia.
    Audu ML; To CS; Kobetic R; Triolo RJ
    IEEE Trans Neural Syst Rehabil Eng; 2010 Dec; 18(6):610-8. PubMed ID: 20378478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.