These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24899133)

  • 1. Multiphase optofluidics on an electro-microfluidic platform powered by electrowetting and dielectrophoresis.
    Fan SK; Wang FM
    Lab Chip; 2014 Aug; 14(15):2728-38. PubMed ID: 24899133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically Tunable Lenses for Imaging and Light Manipulation.
    Chen L; Liang S; Chen Z; Liang X; Chen Q
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric-pressure microplasma in dielectrophoresis-driven bubbles for optical emission spectroscopy.
    Fan SK; Shen YT; Tsai LP; Hsu CC; Ko FH; Cheng YT
    Lab Chip; 2012 Oct; 12(19):3694-9. PubMed ID: 22878730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar optofluidic chip for single particle detection, manipulation, and analysis.
    Yin D; Lunt EJ; Rudenko MI; Deamer DW; Hawkins AR; Schmidt H
    Lab Chip; 2007 Sep; 7(9):1171-5. PubMed ID: 17713616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of droplet electrohydrodynamics for lab-on-a-chip.
    Zeng J; Korsmeyer T
    Lab Chip; 2004 Aug; 4(4):265-77. PubMed ID: 15269791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General digital microfluidic platform manipulating dielectric and conductive droplets by dielectrophoresis and electrowetting.
    Fan SK; Hsieh TH; Lin DY
    Lab Chip; 2009 May; 9(9):1236-42. PubMed ID: 19370242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optofluidic router based on tunable liquid-liquid mirrors.
    Müller P; Kopp D; Llobera A; Zappe H
    Lab Chip; 2014 Feb; 14(4):737-43. PubMed ID: 24287814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.
    Thio SK; Jiang D; Park SY
    Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermophysical, dielectric, and electro-optic properties of nematic liquid crystal droplets confined to a thermoplastic polymer matrix.
    Boussoualem M; Roussel F; Ismaili M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031702. PubMed ID: 15089305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric-Field-Induced Selective Directed Transport of Diverse Droplets.
    Wu J; Li X; Lin T; Zhuang L; Tang B; Liu F; Zhou G
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4126-4137. PubMed ID: 38191293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability Manipulation by Interface-Localized Liquid Dielectrophoresis: Fundamentals and Applications.
    Barman J; Shao W; Tang B; Yuan D; Groenewold J; Zhou G
    Micromachines (Basel); 2019 May; 10(5):. PubMed ID: 31100902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Aqueous Two-Phase System Binodals and Tie-Lines by Electrowetting-on-Dielectric Droplet Manipulation.
    Kojima T; Lin CC; Takayama S; Fan SK
    Chembiochem; 2019 Jan; 20(2):270-275. PubMed ID: 30394637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic manipulation of modes in an optical waveguide using dielectrophoresis.
    Kayani AA; Khoshmanesh K; Nguyen TG; Kostovski G; Chrimes AF; Nasabi M; Heller DA; Mitchell A; Kalantar-zadeh K
    Electrophoresis; 2012 Jul; 33(14):2075-85. PubMed ID: 22821482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-phase microfluidic flow modeling in an electrowetting display microwell.
    Xie Y; Sun M; Jin M; Zhou G; Shui L
    Eur Phys J E Soft Matter; 2016 Feb; 39(2):16. PubMed ID: 26920519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-switchable polydimethylsiloxane-based optofluidics.
    De Sio L; Romito M; Giocondo M; Vasdekis AE; De Luca A; Umeton C
    Lab Chip; 2012 Oct; 12(19):3760-5. PubMed ID: 22859213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of surfactants to reduce the driving voltage of switchable optical elements based on electrowetting.
    Roques-Carmes T; Gigante A; Commenge JM; Corbel S
    Langmuir; 2009 Nov; 25(21):12771-9. PubMed ID: 19785398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconfigurable liquid-core/liquid-cladding optical waveguides with dielectrophoresis-driven virtual microchannels on an electromicrofluidic platform.
    Fan SK; Lee HP; Chien CC; Lu YW; Chiu Y; Lin FY
    Lab Chip; 2016 Mar; 16(5):847-54. PubMed ID: 26841828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic manipulation of particles via transformative optofluidic waveguides.
    Lee KS; Lee KH; Kim SB; Ha BH; Jung JH; Sung HJ; Kim SS
    Sci Rep; 2015 Oct; 5():15170. PubMed ID: 26471003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Developments in Optofluidic Lens Technology.
    Mishra K; van den Ende D; Mugele F
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.