These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 24899804)
1. Silver nanoparticles promote osteogenic differentiation of human urine-derived stem cells at noncytotoxic concentrations. Qin H; Zhu C; An Z; Jiang Y; Zhao Y; Wang J; Liu X; Hui B; Zhang X; Wang Y Int J Nanomedicine; 2014; 9():2469-78. PubMed ID: 24899804 [TBL] [Abstract][Full Text] [Related]
2. Silver nanoparticles promote osteogenic differentiation of human periodontal ligament fibroblasts by regulating the RhoA-TAZ axis. Xu Y; Zheng B; He J; Cui Z; Liu Y Cell Biol Int; 2019 Aug; 43(8):910-920. PubMed ID: 31115946 [TBL] [Abstract][Full Text] [Related]
3. Silver Nanoparticles Alone or in Combination with Calcium Hydroxide Modulate the Viability, Attachment, Migration, and Osteogenic Differentiation of Human Mesenchymal Stem Cells. Algazlan AS; Almuraikhi N; Muthurangan M; Balto H; Alsalleeh F Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36614148 [TBL] [Abstract][Full Text] [Related]
4. Intravenous administration of silver nanoparticles causes organ toxicity through intracellular ROS-related loss of inter-endothelial junction. Guo H; Zhang J; Boudreau M; Meng J; Yin JJ; Liu J; Xu H Part Fibre Toxicol; 2016 Apr; 13():21. PubMed ID: 27129495 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation. Patil S; Singh N Colloids Surf B Biointerfaces; 2019 Apr; 176():150-155. PubMed ID: 30611938 [TBL] [Abstract][Full Text] [Related]
7. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. Ko WK; Heo DN; Moon HJ; Lee SJ; Bae MS; Lee JB; Sun IC; Jeon HB; Park HK; Kwon IK J Colloid Interface Sci; 2015 Jan; 438():68-76. PubMed ID: 25454427 [TBL] [Abstract][Full Text] [Related]
8. Effect of exposure of osteoblast-like cells to low-dose silver nanoparticles: uptake, retention and osteogenic activity. Xie H; Wang P; Wu J Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):260-267. PubMed ID: 30663398 [TBL] [Abstract][Full Text] [Related]
9. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Zhang R; Lee P; Lui VC; Chen Y; Liu X; Lok CN; To M; Yeung KW; Wong KK Nanomedicine; 2015 Nov; 11(8):1949-59. PubMed ID: 26282383 [TBL] [Abstract][Full Text] [Related]
10. Dual functions of silver nanoparticles in F9 teratocarcinoma stem cells, a suitable model for evaluating cytotoxicity- and differentiation-mediated cancer therapy. Han JW; Gurunathan S; Choi YJ; Kim JH Int J Nanomedicine; 2017; 12():7529-7549. PubMed ID: 29066898 [TBL] [Abstract][Full Text] [Related]
11. Silver nanoparticles (AgNPs) and AgNO Hu B; Yin N; Yang R; Liang S; Liang S; Faiola F Sci Total Environ; 2020 Jul; 725():138433. PubMed ID: 32302844 [TBL] [Abstract][Full Text] [Related]
12. Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Tsigkou O; Jones JR; Polak JM; Stevens MM Biomaterials; 2009 Jul; 30(21):3542-50. PubMed ID: 19339047 [TBL] [Abstract][Full Text] [Related]
13. W9 peptide enhanced osteogenic differentiation of human adipose-derived stem cells. Otsuki Y; Ii M; Moriwaki K; Okada M; Ueda K; Asahi M Biochem Biophys Res Commun; 2018 Jan; 495(1):904-910. PubMed ID: 29154826 [TBL] [Abstract][Full Text] [Related]
14. In vivo comparisons of silver nanoparticle and silver ion transport after intranasal delivery in mice. Falconer JL; Grainger DW J Control Release; 2018 Jan; 269():1-9. PubMed ID: 29061510 [TBL] [Abstract][Full Text] [Related]
15. Transgenic expression of ephrinB2 in periodontal ligament stem cells (PDLSCs) modulates osteogenic differentiation via signaling crosstalk between ephrinB2 and EphB4 in PDLSCs and between PDLSCs and pre-osteoblasts within co-culture. Zhu SY; Wang PL; Liao CS; Yang YQ; Yuan CY; Wang S; Dissanayaka WL; Heng BC; Zhang CF J Periodontal Res; 2017 Jun; 52(3):562-573. PubMed ID: 27763659 [TBL] [Abstract][Full Text] [Related]
16. Antimicrobial and osteogenic properties of silver-ion-implanted stainless steel. Qin H; Cao H; Zhao Y; Jin G; Cheng M; Wang J; Jiang Y; An Z; Zhang X; Liu X ACS Appl Mater Interfaces; 2015 May; 7(20):10785-94. PubMed ID: 25952114 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells. Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449 [TBL] [Abstract][Full Text] [Related]
18. Enamel matrix derivative enhances the proliferation and osteogenic differentiation of human periodontal ligament stem cells on the titanium implant surface. Li G; Hu J; Chen H; Chen L; Zhang N; Zhao L; Wen N; Yang Y Organogenesis; 2017 Jul; 13(3):103-113. PubMed ID: 28598248 [TBL] [Abstract][Full Text] [Related]
19. Molecular Mechanism of Silver Nanoparticles-Induced Human Osteoblast Cell Death: Protective Effect of Inducible Nitric Oxide Synthase Inhibitor. Zielinska E; Tukaj C; Radomski MW; Inkielewicz-Stepniak I PLoS One; 2016; 11(10):e0164137. PubMed ID: 27716791 [TBL] [Abstract][Full Text] [Related]
20. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Bielby RC; Pryce RS; Hench LL; Polak JM Tissue Eng; 2005; 11(3-4):479-88. PubMed ID: 15869426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]