These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 24899828)
1. A geographic distribution database of Mononychellus mites (Acari, Tetranychidae) on cassava (Manihot esculenta). Vásquez-Ordóñez AA; Parsa S Zookeys; 2014; (407):1-8. PubMed ID: 24899828 [TBL] [Abstract][Full Text] [Related]
2. A geographic distribution database of the Neotropical cassava whitefly complex (Hemiptera, Aleyrodidae) and their associated parasitoids and hyperparasitoids (Hymenoptera). Vásquez-Ordóñez AA; Hazzi NA; Escobar-Prieto D; Paz-Jojoa D; Parsa S Zookeys; 2015; (545):75-87. PubMed ID: 26798295 [TBL] [Abstract][Full Text] [Related]
3. Relative contribution of biotic and abiotic factors to the population density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae). Rêgo AS; Teodoro AV; Maciel AG; Sarmento RA Exp Appl Acarol; 2013 Aug; 60(4):479-84. PubMed ID: 23417702 [TBL] [Abstract][Full Text] [Related]
4. Interactions in an acarine predator guild: impact on Typhlodromalus aripo abundance and biological control of cassava green mite in Benin, West Africa. Onzo A; Hanna R; Sabelis MW Exp Appl Acarol; 2003; 31(3-4):225-41. PubMed ID: 14974688 [TBL] [Abstract][Full Text] [Related]
5. Potential geographic distribution of two invasive cassava green mites. Parsa S; Hazzi NA; Chen Q; Lu F; Herrera Campo BV; Yaninek JS; Vásquez-Ordóñez AA Exp Appl Acarol; 2015 Feb; 65(2):195-204. PubMed ID: 25491291 [TBL] [Abstract][Full Text] [Related]
6. A simple PCR-based method for the rapid and accurate identification of spider mites (Tetranychidae) on cassava. Ovalle TM; Vásquez-Ordóñez AA; Jimenez J; Parsa S; Cuellar WJ; Becerra Lopez-Lavalle LA Sci Rep; 2020 Nov; 10(1):19496. PubMed ID: 33177527 [TBL] [Abstract][Full Text] [Related]
7. Potential of the mite-pathogenic fungus Neozygites floridana (Entomophthorales: Neozygitaceae) for control of the cassava green mite Mononychellus tanajoa (Acari: Tetranychidae). Elliot SL; de Moraes GJ; Delalibera I; da Silva CA; Tamai MA; Mumford JD Bull Entomol Res; 2000 Jun; 90(3):191-200. PubMed ID: 10996860 [TBL] [Abstract][Full Text] [Related]
8. Species- and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. Pinto-Zevallos DM; Bezerra RHS; Souza SR; Ambrogi BG Exp Appl Acarol; 2018 Mar; 74(3):261-274. PubMed ID: 29478090 [TBL] [Abstract][Full Text] [Related]
9. Failure of the mite-pathogenic fungus Neozygites tanajoae and the predatory mite Neoseiulus idaeus to control a population of the cassava green mite, Mononychellus tanajoa. Elliot SL; de Moraes GJ; Mumford JD Exp Appl Acarol; 2008 Dec; 46(1-4):211-22. PubMed ID: 18665330 [TBL] [Abstract][Full Text] [Related]
10. Prey-related odor preference of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo (Acari: Phytoseiidae). Gnanvossou D; Hanna R; Dicke M Exp Appl Acarol; 2002; 27(1-2):39-56. PubMed ID: 12593511 [TBL] [Abstract][Full Text] [Related]
11. Importance of ambient saturation deficits in an epizootic of the fungus Neozygites floridana in cassava green mites (Mononychellus tanajoa). Elliot SL; De Moraes GJ; Mumford JD Exp Appl Acarol; 2002; 27(1-2):11-25. PubMed ID: 12593509 [TBL] [Abstract][Full Text] [Related]
12. Molecular detection of establishment and geographical distribution of Brazilian isolates of Neozygites tanajoae, a fungus pathogenic to cassava green mite, in Benin (West Africa). Agboton BV; Hanna R; von Tiedemann A Exp Appl Acarol; 2011 Mar; 53(3):235-44. PubMed ID: 20838883 [TBL] [Abstract][Full Text] [Related]
13. South American spider mites: new hosts and localities. Mendonça RS; Navia D; Diniz IR; Flechtmann CH J Insect Sci; 2011; 11():121. PubMed ID: 22224405 [TBL] [Abstract][Full Text] [Related]
14. Effects of prey mite species on life history of the phytoseiid predators Typhlodromalus manihoti and Typhlodromalus aripo. Gnanvossou D; Yaninek JS; Hanna R; Dicke M Exp Appl Acarol; 2003; 30(4):265-78. PubMed ID: 14756392 [TBL] [Abstract][Full Text] [Related]
15. Identifying genetically redundant accessions in the world's largest cassava collection. Carvajal-Yepes M; Ospina JA; Aranzales E; Velez-Tobon M; Correa Abondano M; Manrique-Carpintero NC; Wenzl P Front Plant Sci; 2023; 14():1338377. PubMed ID: 38304449 [TBL] [Abstract][Full Text] [Related]
16. Single versus multiple enemies and the impact on biological control of spider mites in cassava fields in West-Africa. Onzo A; Sabelis MW; Hanna R Exp Appl Acarol; 2014 Mar; 62(3):293-311. PubMed ID: 24114338 [TBL] [Abstract][Full Text] [Related]
17. Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities. Yang J; Wang GQ; Zhou Q; Lu W; Ma JQ; Huang JH Exp Appl Acarol; 2019 Jun; 78(2):273-293. PubMed ID: 31168751 [TBL] [Abstract][Full Text] [Related]
19. Functional response of Euseius concordis to densities of different developmental stages of the cassava green mite. Costa EC; Teodoro AV; Rêgo AS; Pedro-Neto M; Sarmento RA Exp Appl Acarol; 2014 Nov; 64(3):277-86. PubMed ID: 24867060 [TBL] [Abstract][Full Text] [Related]
20. Cassava mosaic disease and its management in Southeast Asia. Uke A; Tokunaga H; Utsumi Y; Vu NA; Nhan PT; Srean P; Hy NH; Ham LH; Lopez-Lavalle LAB; Ishitani M; Hung N; Tuan LN; Van Hong N; Huy NQ; Hoat TX; Takasu K; Seki M; Ugaki M Plant Mol Biol; 2022 Jun; 109(3):301-311. PubMed ID: 34240309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]