BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 24899886)

  • 1. Ribonucleotide reductase metallocofactor: assembly, maintenance and inhibition.
    Zhang C; Liu G; Huang M
    Front Biol (Beijing); 2014 Jan; 9(2):104-113. PubMed ID: 24899886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements.
    Li H; Stümpfig M; Zhang C; An X; Stubbe J; Lill R; Huang M
    J Biol Chem; 2017 Jul; 292(27):11445-11451. PubMed ID: 28515324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved electron donor complex Dre2-Tah18 is required for ribonucleotide reductase metallocofactor assembly and DNA synthesis.
    Zhang Y; Li H; Zhang C; An X; Liu L; Stubbe J; Huang M
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):E1695-704. PubMed ID: 24733891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of an oligomeric interface prevents allosteric inhibition of
    Chen PY; Funk MA; Brignole EJ; Drennan CL
    J Biol Chem; 2018 Jun; 293(26):10404-10412. PubMed ID: 29700111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An active dimanganese(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.
    Cotruvo JA; Stubbe J
    Biochemistry; 2010 Feb; 49(6):1297-309. PubMed ID: 20070127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NrdI, a flavodoxin involved in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide reductase.
    Cotruvo JA; Stubbe J
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14383-8. PubMed ID: 18799738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prototypic class Ia ribonucleotide reductase from Escherichia coli: still surprising after all these years.
    Brignole EJ; Ando N; Zimanyi CM; Drennan CL
    Biochem Soc Trans; 2012 Jun; 40(3):523-30. PubMed ID: 22616862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of in vivo roles of the C-terminal tails of the small subunit (ββ') of Saccharomyces cerevisiae ribonucleotide reductase: contribution to cofactor formation and intersubunit association within the active holoenzyme.
    Zhang Y; An X; Stubbe J; Huang M
    J Biol Chem; 2013 May; 288(20):13951-13959. PubMed ID: 23532842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular regulation of ribonucleotide reductase in eukaryotes.
    Guarino E; Salguero I; Kearsey SE
    Semin Cell Dev Biol; 2014 Jun; 30():97-103. PubMed ID: 24704278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rapid and sensitive assay for quantifying the activity of both aerobic and anaerobic ribonucleotide reductases acting upon any or all substrates.
    Levitz TS; Andree GA; Jonnalagadda R; Dawson CD; Bjork RE; Drennan CL
    PLoS One; 2022; 17(6):e0269572. PubMed ID: 35675376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells.
    Håkansson P; Hofer A; Thelander L
    J Biol Chem; 2006 Mar; 281(12):7834-41. PubMed ID: 16436374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights.
    Makhlynets O; Boal AK; Rhodes DV; Kitten T; Rosenzweig AC; Stubbe J
    J Biol Chem; 2014 Feb; 289(9):6259-72. PubMed ID: 24381172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function and regulation of yeast ribonucleotide reductase: cell cycle, genotoxic stress, and iron bioavailability.
    Sanvisens N; de Llanos R; Puig S
    Biomed J; 2013; 36(2):51-8. PubMed ID: 23644233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, function, and mechanism of ribonucleotide reductases.
    Kolberg M; Strand KR; Graff P; Andersson KK
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):1-34. PubMed ID: 15158709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reannotation of the Ribonucleotide Reductase in a Cyanophage Reveals Life History Strategies Within the Virioplankton.
    Harrison AO; Moore RM; Polson SW; Wommack KE
    Front Microbiol; 2019; 10():134. PubMed ID: 30804913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential Roles of Ribonucleotide Reductases under DNA Damage and Replication Stresses in Cryptococcus neoformans.
    Jung KW; Kwon S; Jung JH; Bahn YS
    Microbiol Spectr; 2022 Aug; 10(4):e0104422. PubMed ID: 35736239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways.
    Yao R; Zhang Z; An X; Bucci B; Perlstein DL; Stubbe J; Huang M
    Proc Natl Acad Sci U S A; 2003 May; 100(11):6628-33. PubMed ID: 12732713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Importance of the maintenance pathway in the regulation of the activity of Escherichia coli ribonucleotide reductase.
    Hristova D; Wu CH; Jiang W; Krebs C; Stubbe J
    Biochemistry; 2008 Apr; 47(13):3989-99. PubMed ID: 18314964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic studies of the iron and manganese reconstituted tyrosyl radical in Bacillus cereus ribonucleotide reductase R2 protein.
    Tomter AB; Zoppellaro G; Bell CB; Barra AL; Andersen NH; Solomon EI; Andersson KK
    PLoS One; 2012; 7(3):e33436. PubMed ID: 22432022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of a new substrate-derived radical during inactivation of ribonucleotide reductase from Escherichia coli by gemcitabine 5'-diphosphate.
    van der Donk WA; Yu G; Pérez L; Sanchez RJ; Stubbe J; Samano V; Robins MJ
    Biochemistry; 1998 May; 37(18):6419-26. PubMed ID: 9572859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.