These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24900176)

  • 1. Exploring target-selectivity patterns of molecular scaffolds.
    Hu Y; Bajorath J
    ACS Med Chem Lett; 2010 May; 1(2):54-8. PubMed ID: 24900176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic identification of scaffolds representing compounds active against individual targets and single or multiple target families.
    Hu Y; Bajorath J
    J Chem Inf Model; 2013 Feb; 53(2):312-26. PubMed ID: 23339619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular scaffolds with high propensity to form multi-target activity cliffs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Apr; 50(4):500-10. PubMed ID: 20361784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic analysis of public domain compound potency data identifies selective molecular scaffolds across druggable target families.
    Hu Y; Wassermann AM; Lounkine E; Bajorath J
    J Med Chem; 2010 Jan; 53(2):752-8. PubMed ID: 20000355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational chemical biology: identification of small molecular probes that discriminate between members of target protein families.
    Dimova D; Bajorath J
    Chem Biol Drug Des; 2012 Apr; 79(4):369-75. PubMed ID: 22171579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic assessment of scaffold hopping versus activity cliff formation across bioactive compound classes following a molecular hierarchy.
    Stumpfe D; Dimova D; Bajorath J
    Bioorg Med Chem; 2015 Jul; 23(13):3183-91. PubMed ID: 25982076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Assessment of Molecular Selectivity at the Level of Targets, Bioactive Compounds, and Structural Analogues.
    Hu Y; Bajorath J
    ChemMedChem; 2016 Jun; 11(12):1362-70. PubMed ID: 26358784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From structure-activity to structure-selectivity relationships: quantitative assessment, selectivity cliffs, and key compounds.
    Peltason L; Hu Y; Bajorath J
    ChemMedChem; 2009 Nov; 4(11):1864-73. PubMed ID: 19750525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target family-directed exploration of scaffolds with different SAR profiles.
    Hu Y; Bajorath J
    J Chem Inf Model; 2011 Dec; 51(12):3138-48. PubMed ID: 22091691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints.
    Vogt I; Stumpfe D; Ahmed HE; Bajorath J
    Chem Biol Drug Des; 2007 Sep; 70(3):195-205. PubMed ID: 17718714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for computer-aided chemical biology. Part 3: analysis of structure-selectivity relationships through single- or dual-step selectivity searching and Bayesian classification.
    Stumpfe D; Geppert H; Bajorath J
    Chem Biol Drug Des; 2008 Jun; 71(6):518-28. PubMed ID: 18482335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Privileged Structural Motif Detection and Analysis Using Generative Topographic Maps.
    Kayastha S; Horvath D; Gilberg E; Gütschow M; Bajorath J; Varnek A
    J Chem Inf Model; 2017 May; 57(5):1218-1232. PubMed ID: 28409625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are target-family-privileged substructures truly privileged?
    Schnur DM; Hermsmeier MA; Tebben AJ
    J Med Chem; 2006 Mar; 49(6):2000-9. PubMed ID: 16539387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polypharmacology directed compound data mining: identification of promiscuous chemotypes with different activity profiles and comparison to approved drugs.
    Hu Y; Bajorath J
    J Chem Inf Model; 2010 Dec; 50(12):2112-8. PubMed ID: 21070069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring Structural Relationships between Bioactive and Commercial Chemical Space and Developing Target Hypotheses for Compound Acquisition.
    Cerchia C; Dimova D; Lavecchia A; Bajorath J
    ACS Omega; 2017 Nov; 2(11):7760-7766. PubMed ID: 30023563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of ligands with bicyclic scaffolds provides insights into mechanisms of estrogen receptor subtype selectivity.
    Hsieh RW; Rajan SS; Sharma SK; Guo Y; DeSombre ER; Mrksich M; Greene GL
    J Biol Chem; 2006 Jun; 281(26):17909-19. PubMed ID: 16648639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self Organizing Map-Based Classification of Cathepsin k and S Inhibitors with Different Selectivity Profiles Using Different Structural Molecular Fingerprints: Design and Application for Discovery of Novel Hits.
    Ihmaid SK; Ahmed HE; Zayed MF; Abadleh MM
    Molecules; 2016 Jan; 21(2):175. PubMed ID: 26840291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring structure-selectivity relationships of biogenic amine GPCR antagonists using similarity searching and dynamic compound mapping.
    Vogt I; Ahmed HE; Auer J; Bajorath J
    Mol Divers; 2008 Feb; 12(1):25-40. PubMed ID: 18317941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold.
    Polanski J; Kurczyk A; Bak A; Musiol R
    Curr Med Chem; 2012; 19(13):1921-45. PubMed ID: 22376032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Many drugs contain unique scaffolds with varying structural relationships to scaffolds of currently available bioactive compounds.
    Hu Y; Bajorath J
    Eur J Med Chem; 2014 Apr; 76():427-34. PubMed ID: 24602788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.