These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 24900272)

  • 1. Homology Model and Docking-Based Virtual Screening for Ligands of the σ1 Receptor.
    Laurini E; Col VD; Mamolo MG; Zampieri D; Posocco P; Fermeglia M; Vio L; Pricl S
    ACS Med Chem Lett; 2011 Nov; 2(11):834-9. PubMed ID: 24900272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Homology Model of Sigma1 Receptor.
    Laurini E; Marson D; Fermeglia M; Pricl S
    Handb Exp Pharmacol; 2017; 244():27-50. PubMed ID: 28667476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reliability of Docking-Based Virtual Screening for GPCR Ligands with Homology Modeled Structures: A Case Study of the Angiotensin II Type I Receptor.
    Chen H; Fu W; Wang Z; Wang X; Lei T; Zhu F; Li D; Chang S; Xu L; Hou T
    ACS Chem Neurosci; 2019 Jan; 10(1):677-689. PubMed ID: 30265513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential modulating effect of the Ascaris suum nicotinic acetylcholine receptor (nAChR) by compounds GSK575594A, diazepam and flumazenil discovered by structure-based virtual screening approach.
    Stevanovic S; Marjanović DS; Trailović SM; Zdravković N; Perdih A; Nikolic K
    Mol Biochem Parasitol; 2021 Mar; 242():111350. PubMed ID: 33422580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pharmacophore and docking-based sequential virtual screening for the identification of novel Sigma 1 receptor ligands.
    Alamri MA; Alamri MA
    Bioinformation; 2019; 15(8):586-595. PubMed ID: 31719769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of MM-PBSA Methods in Virtual Screening.
    Poli G; Granchi C; Rizzolio F; Tuccinardi T
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32340232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols.
    Evers A; Hessler G; Matter H; Klabunde T
    J Med Chem; 2005 Aug; 48(17):5448-65. PubMed ID: 16107144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medicinal Chemistry of σ
    Weber F; Wünsch B
    Handb Exp Pharmacol; 2017; 244():51-79. PubMed ID: 28620761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology modeling, docking and structure-based virtual screening for new inhibitor identification of
    Panda SK; Saxena S; Guruprasad L
    J Biomol Struct Dyn; 2020 Apr; 38(7):1887-1902. PubMed ID: 31179839
    [No Abstract]   [Full Text] [Related]  

  • 10. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.
    Chaudhari P; Bari S
    Mol Divers; 2016 Feb; 20(1):41-53. PubMed ID: 26416560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual Screening for Ligand Discovery at the σ
    Greenfield DA; Schmidt HR; Skiba MA; Mandler MD; Anderson JR; Sliz P; Kruse AC
    ACS Med Chem Lett; 2020 Aug; 11(8):1555-1561. PubMed ID: 32832023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of potential inhibitors for HCV NS5b of genotype 4a by combining dynamic simulation, protein-ligand interaction fingerprint, 3D pharmacophore, docking and 3D QSAR.
    El-Hassab MAE; El-Bastawissy EE; El-Moselhy TF
    J Biomol Struct Dyn; 2020 Sep; 38(15):4521-4535. PubMed ID: 31647392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacophore- based virtual screening, 3D- QSAR, molecular docking approach for identification of potential dipeptidyl peptidase IV inhibitors.
    Shah BM; Modi P; Trivedi P
    J Biomol Struct Dyn; 2021 Apr; 39(6):2021-2043. PubMed ID: 32242496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies.
    Ekhteiari Salmas R; Unlu A; Bektaş M; Yurtsever M; Mestanoglu M; Durdagi S
    J Biomol Struct Dyn; 2017 Jul; 35(9):1899-1915. PubMed ID: 27315035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Potential Antituberculosis Drugs Through Docking and Virtual Screening.
    Anand R
    Interdiscip Sci; 2018 Jun; 10(2):419-429. PubMed ID: 27147082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the value of homology models for virtual screening: discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches.
    Huang D; Gu Q; Ge H; Ye J; Salam NK; Hagler A; Chen H; Xu J
    J Chem Inf Model; 2012 May; 52(5):1356-66. PubMed ID: 22545675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring.
    Radestock S; Weil T; Renner S
    J Chem Inf Model; 2008 May; 48(5):1104-17. PubMed ID: 18442221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of potential inhibitors for HCV NS3 genotype 4a by combining protein-ligand interaction fingerprint, 3D pharmacophore, docking, and dynamic simulation.
    El-Hasab MAE; El-Bastawissy EE; El-Moselhy TF
    J Biomol Struct Dyn; 2018 May; 36(7):1713-1727. PubMed ID: 28531373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.