BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24900569)

  • 21. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin.
    Yu K; Toral-Barza L; Shi C; Zhang WG; Lucas J; Shor B; Kim J; Verheijen J; Curran K; Malwitz DJ; Cole DC; Ellingboe J; Ayral-Kaloustian S; Mansour TS; Gibbons JJ; Abraham RT; Nowak P; Zask A
    Cancer Res; 2009 Aug; 69(15):6232-40. PubMed ID: 19584280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Therapeutic Benefit of Selective Inhibition of p110α PI3-Kinase in Pancreatic Neuroendocrine Tumors.
    Soler A; Figueiredo AM; Castel P; Martin L; Monelli E; Angulo-Urarte A; Milà-Guasch M; Viñals F; Baselga J; Casanovas O; Graupera M
    Clin Cancer Res; 2016 Dec; 22(23):5805-5817. PubMed ID: 27225693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity.
    deGraffenried LA; Friedrichs WE; Russell DH; Donzis EJ; Middleton AK; Silva JM; Roth RA; Hidalgo M
    Clin Cancer Res; 2004 Dec; 10(23):8059-67. PubMed ID: 15585641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and characterisation of a panel of phosphatidylinositide 3-kinase - mammalian target of rapamycin inhibitor resistant lung cancer cell lines.
    Heavey S; Dowling P; Moore G; Barr MP; Kelly N; Maher SG; Cuffe S; Finn SP; O'Byrne KJ; Gately K
    Sci Rep; 2018 Jan; 8(1):1652. PubMed ID: 29374181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma.
    Vega F; Medeiros LJ; Leventaki V; Atwell C; Cho-Vega JH; Tian L; Claret FX; Rassidakis GZ
    Cancer Res; 2006 Jul; 66(13):6589-97. PubMed ID: 16818631
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and ligand-based design of mTOR and PI3-kinase inhibitors leading to the clinical candidates VS-5584 (SB2343) and SB2602.
    Poulsen A; Nagaraj H; Lee A; Blanchard S; Soh CK; Chen D; Wang H; Hart S; Goh KC; Dymock B; Williams M
    J Chem Inf Model; 2014 Nov; 54(11):3238-50. PubMed ID: 25317974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells.
    Zou ZQ; Zhang LN; Wang F; Bellenger J; Shen YZ; Zhang XH
    Mol Med Rep; 2012 Feb; 5(2):503-8. PubMed ID: 22101421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of mammalian target of rapamycin in transformed B lymphocytes is nutrient dependent but independent of Akt, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase, insulin growth factor-I, and serum.
    Wlodarski P; Kasprzycka M; Liu X; Marzec M; Robertson ES; Slupianek A; Wasik MA
    Cancer Res; 2005 Sep; 65(17):7800-8. PubMed ID: 16140948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Antitumor efficacy profile of PKI-402, a dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor.
    Mallon R; Hollander I; Feldberg L; Lucas J; Soloveva V; Venkatesan A; Dehnhardt C; Delos Santos E; Chen Z; Dos Santos O; Ayral-Kaloustian S; Gibbons J
    Mol Cancer Ther; 2010 Apr; 9(4):976-84. PubMed ID: 20371716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual inhibition of class IA phosphatidylinositol 3-kinase and mammalian target of rapamycin as a new therapeutic option for T-cell acute lymphoblastic leukemia.
    Chiarini F; Falà F; Tazzari PL; Ricci F; Astolfi A; Pession A; Pagliaro P; McCubrey JA; Martelli AM
    Cancer Res; 2009 Apr; 69(8):3520-8. PubMed ID: 19351820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual targeting of AKT and mammalian target of rapamycin: a potential therapeutic approach for malignant peripheral nerve sheath tumor.
    Zou CY; Smith KD; Zhu QS; Liu J; McCutcheon IE; Slopis JM; Meric-Bernstam F; Peng Z; Bornmann WG; Mills GB; Lazar AJ; Pollock RE; Lev D
    Mol Cancer Ther; 2009 May; 8(5):1157-68. PubMed ID: 19417153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimodal microvascular imaging reveals that selective inhibition of class I PI3K is sufficient to induce an antivascular response.
    Sampath D; Oeh J; Wyatt SK; Cao TC; Koeppen H; Eastham-Anderson J; Robillard L; Ho CC; Ross J; Zhuang G; Reslan HB; Vitorino P; Barck KH; Ungersma SE; Vernes JM; Caunt M; Van Bruggen N; Ye W; Vijapurkar U; Meng YJ; Ferrara N; Friedman LS; Carano RA
    Neoplasia; 2013 Jul; 15(7):694-711. PubMed ID: 23814482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ATP-competitive inhibitors of mTOR: an update.
    Schenone S; Brullo C; Musumeci F; Radi M; Botta M
    Curr Med Chem; 2011; 18(20):2995-3014. PubMed ID: 21651476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice.
    García-Martínez JM; Wullschleger S; Preston G; Guichard S; Fleming S; Alessi DR; Duce SL
    Br J Cancer; 2011 Mar; 104(7):1116-25. PubMed ID: 21407213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preclinical characterization of OSI-027, a potent and selective inhibitor of mTORC1 and mTORC2: distinct from rapamycin.
    Bhagwat SV; Gokhale PC; Crew AP; Cooke A; Yao Y; Mantis C; Kahler J; Workman J; Bittner M; Dudkin L; Epstein DM; Gibson NW; Wild R; Arnold LD; Houghton PJ; Pachter JA
    Mol Cancer Ther; 2011 Aug; 10(8):1394-406. PubMed ID: 21673091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MET and PI3K/mTOR as a potential combinatorial therapeutic target in malignant pleural mesothelioma.
    Kanteti R; Dhanasingh I; Kawada I; Lennon FE; Arif Q; Bueno R; Hasina R; Husain AN; Vigneswaran W; Seiwert T; Kindler HL; Salgia R
    PLoS One; 2014; 9(9):e105919. PubMed ID: 25221930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications.
    Fourneaux B; Chaire V; Lucchesi C; Karanian M; Pineau R; Laroche-Clary A; Italiano A
    Oncotarget; 2017 Jan; 8(5):7878-7890. PubMed ID: 28002802
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2.
    Yu K; Shi C; Toral-Barza L; Lucas J; Shor B; Kim JE; Zhang WG; Mahoney R; Gaydos C; Tardio L; Kim SK; Conant R; Curran K; Kaplan J; Verheijen J; Ayral-Kaloustian S; Mansour TS; Abraham RT; Zask A; Gibbons JJ
    Cancer Res; 2010 Jan; 70(2):621-31. PubMed ID: 20068177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in the discovery of small-molecule ATP competitive mTOR inhibitors: a patent review.
    Zask A; Verheijen JC; Richard DJ
    Expert Opin Ther Pat; 2011 Jul; 21(7):1109-27. PubMed ID: 21591993
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New inhibitors of the mammalian target of rapamycin signaling pathway for cancer.
    Albert S; Serova M; Dreyer C; Sablin MP; Faivre S; Raymond E
    Expert Opin Investig Drugs; 2010 Aug; 19(8):919-30. PubMed ID: 20569080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.