These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 24900610)
1. Structures of human acetylcholinesterase bound to dihydrotanshinone I and territrem B show peripheral site flexibility. Cheung J; Gary EN; Shiomi K; Rosenberry TL ACS Med Chem Lett; 2013 Nov; 4(11):1091-6. PubMed ID: 24900610 [TBL] [Abstract][Full Text] [Related]
2. Acetylcholinesterase complexes with the natural product inhibitors dihydrotanshinone I and territrem B: binding site assignment from inhibitor competition and validation through crystal structure determination. Cheung J; Beri V; Shiomi K; Rosenberry TL J Mol Neurosci; 2014 Jul; 53(3):506-10. PubMed ID: 24573600 [TBL] [Abstract][Full Text] [Related]
3. The natural product dihydrotanshinone I provides a prototype for uncharged inhibitors that bind specifically to the acetylcholinesterase peripheral site with nanomolar affinity. Beri V; Wildman SA; Shiomi K; Al-Rashid ZF; Cheung J; Rosenberry TL Biochemistry; 2013 Oct; 52(42):7486-99. PubMed ID: 24040835 [TBL] [Abstract][Full Text] [Related]
4. Dynamic structure based pharmacophore modeling of the Acetylcholinesterase reveals several potential inhibitors. Shiri F; Pirhadi S; Ghasemi JB J Biomol Struct Dyn; 2019 Apr; 37(7):1800-1812. PubMed ID: 29695192 [TBL] [Abstract][Full Text] [Related]
5. Acetylcholinesterase: A Primary Target for Drugs and Insecticides. Thapa S; Lv M; Xu H Mini Rev Med Chem; 2017; 17(17):1665-1676. PubMed ID: 28117022 [TBL] [Abstract][Full Text] [Related]
6. Drug-like leads for steric discrimination between substrate and inhibitors of human acetylcholinesterase. Wildman SA; Zheng X; Sept D; Auletta JT; Rosenberry TL; Marshall GR Chem Biol Drug Des; 2011 Oct; 78(4):495-504. PubMed ID: 21668653 [TBL] [Abstract][Full Text] [Related]
7. Positive cooperative regulation of double binding sites for human acetylcholinesterase. Liu H; Ye W; Chen HF Chem Biol Drug Des; 2017 May; 89(5):694-704. PubMed ID: 27779818 [TBL] [Abstract][Full Text] [Related]
8. Targeting acetylcholinesterase: identification of chemical leads by high throughput screening, structure determination and molecular modeling. Berg L; Andersson CD; Artursson E; Hörnberg A; Tunemalm AK; Linusson A; Ekström F PLoS One; 2011; 6(11):e26039. PubMed ID: 22140425 [TBL] [Abstract][Full Text] [Related]
9. Hopeahainol A binds reversibly at the acetylcholinesterase (AChE) peripheral site and inhibits enzyme activity with a novel higher order concentration dependence. Rosenberry TL; Martin PK; Nix AJ; Wildman SA; Cheung J; Snyder SA; Tan RX Chem Biol Interact; 2016 Nov; 259(Pt B):78-84. PubMed ID: 27297626 [TBL] [Abstract][Full Text] [Related]
10. Productive reorientation of a bound oxime reactivator revealed in room temperature X-ray structures of native and VX-inhibited human acetylcholinesterase. Gerlits O; Kong X; Cheng X; Wymore T; Blumenthal DK; Taylor P; Radić Z; Kovalevsky A J Biol Chem; 2019 Jul; 294(27):10607-10618. PubMed ID: 31138650 [TBL] [Abstract][Full Text] [Related]
11. Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway. Mallender WD; Szegletes T; Rosenberry TL Biochemistry; 2000 Jul; 39(26):7753-63. PubMed ID: 10869180 [TBL] [Abstract][Full Text] [Related]
12. Altered binding of thioflavin t to the peripheral anionic site of acetylcholinesterase after phosphorylation of the active site by chlorpyrifos oxon or dichlorvos. Sultatos LG; Kaushik R Toxicol Appl Pharmacol; 2008 Aug; 230(3):390-6. PubMed ID: 18423506 [TBL] [Abstract][Full Text] [Related]
13. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands. Szegletes T; Mallender WD; Rosenberry TL Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743 [TBL] [Abstract][Full Text] [Related]
14. Thioflavin T is a fluorescent probe of the acetylcholinesterase peripheral site that reveals conformational interactions between the peripheral and acylation sites. De Ferrari GV; Mallender WD; Inestrosa NC; Rosenberry TL J Biol Chem; 2001 Jun; 276(26):23282-7. PubMed ID: 11313335 [TBL] [Abstract][Full Text] [Related]
15. Acetylcholinesterase: from 3D structure to function. Dvir H; Silman I; Harel M; Rosenberry TL; Sussman JL Chem Biol Interact; 2010 Sep; 187(1-3):10-22. PubMed ID: 20138030 [TBL] [Abstract][Full Text] [Related]
16. Structural insights into substrate traffic and inhibition in acetylcholinesterase. Colletier JP; Fournier D; Greenblatt HM; Stojan J; Sussman JL; Zaccai G; Silman I; Weik M EMBO J; 2006 Jun; 25(12):2746-56. PubMed ID: 16763558 [TBL] [Abstract][Full Text] [Related]
17. The inhibitory effects of bile acids on catalytic and non‑catalytic functions of acetylcholinesterase as a therapeutic target in Alzheimer's disease. Sadeghi L; Yekta R; Dehghan G Acta Neurobiol Exp (Wars); 2020; 80(2):108-116. PubMed ID: 32602852 [TBL] [Abstract][Full Text] [Related]
18. Interactions of anticholinesterases with Achatina fulica acetylcholine responses and electrogenic sodium pump. Arvanov VL; Liou HH; Chang YC; Chen RC; Peng FC; Ling KH; Tsai MC Neuroscience; 1994 Sep; 62(2):581-6. PubMed ID: 7830898 [TBL] [Abstract][Full Text] [Related]
19. Localization of a novel adhesion-promoting site on acetylcholinesterase using catalytic antiacetylcholinesterase antibodies displaying cholinesterase-like activity. Johnson G; Moore SW Appl Biochem Biotechnol; 2000; 83(1-3):131-44; discussion 145-53. PubMed ID: 10826955 [TBL] [Abstract][Full Text] [Related]
20. Docking-based Design of Galantamine Derivatives with Dual-site Binding to Acetylcholinesterase. Stavrakov G; Philipova I; Zheleva D; Atanasova M; Konstantinov S; Doytchinova I Mol Inform; 2016 Jul; 35(6-7):278-85. PubMed ID: 27492242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]