These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 2490072)

  • 1. Silver accumulation in Pseudomonas stutzeri AG259.
    Gadd GM; Laurence OS; Briscoe PA; Trevors JT
    Biol Met; 1989; 2(3):168-73. PubMed ID: 2490072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver resistance in Pseudomonas stutzeri.
    Slawson RM; Lohmeier-Vogel EM; Lee H; Trevors JT
    Biometals; 1994 Jan; 7(1):30-40. PubMed ID: 8118170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silver-based crystalline nanoparticles, microbially fabricated.
    Klaus T; Joerger R; Olsson E; Granqvist CG
    Proc Natl Acad Sci U S A; 1999 Nov; 96(24):13611-4. PubMed ID: 10570120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of halides on plasmid-mediated silver resistance in Escherichia coli.
    Gupta A; Maynes M; Silver S
    Appl Environ Microbiol; 1998 Dec; 64(12):5042-5. PubMed ID: 9835606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution and accumulation of 10 nm silver nanoparticles in maternal tissues and visceral yolk sac of pregnant mice, and a potential effect on embryo growth.
    Austin CA; Hinkley GK; Mishra AR; Zhang Q; Umbreit TH; Betz MW; E Wildt B; Casey BJ; Francke-Carroll S; Hussain SM; Roberts SM; Brown KM; Goering PL
    Nanotoxicology; 2016 Aug; 10(6):654-61. PubMed ID: 26593872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The changes to apical silver membrane uptake, and basolateral membrane silver export in the gills of rainbow trout (Oncorhynchus mykiss) on exposure to sublethal silver concentrations.
    Bury NR
    Aquat Toxicol; 2005 Mar; 72(1-2):135-45. PubMed ID: 15748752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biologically incorporated dietary silver has no ionoregulatory effects in American red crayfish (Procambarus clarkii).
    Mann RM; Grosell M; Bianchini A; Wood CM
    Environ Toxicol Chem; 2004 Feb; 23(2):388-95. PubMed ID: 14982386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of salinity and organic matter on silver accumulation in Gulf toadfish (Opsanus beta).
    Nichols JW; Brown S; Wood CM; Walsh PJ; Playle RC
    Aquat Toxicol; 2006 Jun; 78(3):253-61. PubMed ID: 16675040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability of silver and its relationship to ionoregulation and silver speciation across a range of salinities in the gulf toadfish (Opsanus beta).
    Wood CM; McDonald MD; Walker P; Grosell M; Barimo JF; Playle RC; Walsh PJ
    Aquat Toxicol; 2004 Nov; 70(2):137-57. PubMed ID: 15522431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of chloride concentration on the cytotoxicity, bioavailability, and bioreactivity of copper and silver in the rainbow trout gut cell line, RTgutGC.
    Ibrahim M; Minghetti M
    Ecotoxicology; 2022 May; 31(4):626-636. PubMed ID: 35362806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3.
    Wei X; Luo M; Li W; Yang L; Liang X; Xu L; Kong P; Liu H
    Bioresour Technol; 2012 Jan; 103(1):273-8. PubMed ID: 22019398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competition between copper and silver in Fischer rats with a normal copper metabolism and in Long-Evans Cinnamon rats with an abnormal copper metabolism.
    Sugawara N; Sugawara C
    Arch Toxicol; 2000 Jul; 74(4-5):190-5. PubMed ID: 10959791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium.
    Topuz E; van Gestel CA
    Environ Toxicol Chem; 2015 Dec; 34(12):2816-23. PubMed ID: 26094724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silver tolerance and accumulation in yeasts.
    Kierans M; Staines AM; Bennett H; Gadd GM
    Biol Met; 1991; 4(2):100-6. PubMed ID: 1878280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria.
    Yang Y; Wang J; Xiu Z; Alvarez PJ
    Environ Toxicol Chem; 2013 Jul; 32(7):1488-94. PubMed ID: 23554086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins.
    Li XZ; Nikaido H; Williams KE
    J Bacteriol; 1997 Oct; 179(19):6127-32. PubMed ID: 9324262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii.
    Lee DY; Fortin C; Campbell PG
    Aquat Toxicol; 2005 Oct; 75(2):127-35. PubMed ID: 16139901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of soil and dietary exposures to Ag nanoparticles and AgNO₃ in the terrestrial isopod Porcellionides pruinosus.
    Tourinho PS; van Gestel CA; Jurkschat K; Soares AM; Loureiro S
    Environ Pollut; 2015 Oct; 205():170-7. PubMed ID: 26071943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaccumulation of silver nanoparticles into Daphnia magna from a freshwater algal diet and the impact of phosphate availability.
    McTeer J; Dean AP; White KN; Pittman JK
    Nanotoxicology; 2014 May; 8(3):305-16. PubMed ID: 23421707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reaction parameters of in situ silver chloride precipitation on cellulose fibres.
    Vosmanská V; Kolářová K; Pišlová M; Švorčík V
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():134-142. PubMed ID: 30573234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.