These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications. Kim K; Yu M; Zong X; Chiu J; Fang D; Seo YS; Hsiao BS; Chu B; Hadjiargyrou M Biomaterials; 2003 Dec; 24(27):4977-85. PubMed ID: 14559011 [TBL] [Abstract][Full Text] [Related]
3. Foreign body reaction associated with PET and PET/chitosan electrospun nanofibrous abdominal meshes. Veleirinho B; Coelho DS; Dias PF; Maraschin M; Pinto R; Cargnin-Ferreira E; Peixoto A; Souza JA; Ribeiro-do-Valle RM; Lopes-da-Silva JA PLoS One; 2014; 9(4):e95293. PubMed ID: 24740104 [TBL] [Abstract][Full Text] [Related]
4. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Qiao M; Chen D; Ma X; Liu Y Int J Pharm; 2005 Apr; 294(1-2):103-12. PubMed ID: 15814234 [TBL] [Abstract][Full Text] [Related]
5. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering. Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428 [TBL] [Abstract][Full Text] [Related]
11. Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering. Jeong B; Lee KM; Gutowska A; An YH Biomacromolecules; 2002; 3(4):865-8. PubMed ID: 12099835 [TBL] [Abstract][Full Text] [Related]
12. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues. Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875 [TBL] [Abstract][Full Text] [Related]
13. Biological compatibility, thermal and in vitro simulated degradation for poly(p-dioxanone)/poly(lactide-co-glycolide)/poly(ethylene succinate-co-glycolide). Zhong G; Liu Y; Liu C; Li X; Lin J; Lanzon AL; Zhang H; Chen M J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1817-1835. PubMed ID: 33894107 [TBL] [Abstract][Full Text] [Related]
15. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering. Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987 [TBL] [Abstract][Full Text] [Related]
16. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers. Xiong X; Li Q; Lu JW; Guo ZX; Sun ZH; Yu J J Biomater Sci Polym Ed; 2012; 23(9):1217-30. PubMed ID: 21639995 [TBL] [Abstract][Full Text] [Related]
17. Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates. Yohe ST; Colson YL; Grinstaff MW J Am Chem Soc; 2012 Feb; 134(4):2016-9. PubMed ID: 22279966 [TBL] [Abstract][Full Text] [Related]
18. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers. Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119 [TBL] [Abstract][Full Text] [Related]
19. Comparative degradation study of biodegradable microspheres of poly(DL-lactide-co-glycolide) with poly(ethyleneglycol) derivates. Garcia JT; Fariña JB; Munguía O; Llabrés M J Microencapsul; 1999; 16(1):83-94. PubMed ID: 9972505 [TBL] [Abstract][Full Text] [Related]
20. Effects of poly(lactic-co-glycolic acid) (PLGA) degradability on the apatite-forming capacity of electrospun PLGA/SiO(2)-CaO nonwoven composite fabrics. Kim IA; Rhee SH J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):218-26. PubMed ID: 20091921 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]