These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24901038)

  • 1. Imparting superhydrophobicity to biodegradable poly(lactide-co-glycolide) electrospun meshes.
    Kaplan JA; Lei H; Liu R; Padera R; Colson YL; Grinstaff MW
    Biomacromolecules; 2014 Jul; 15(7):2548-54. PubMed ID: 24901038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications.
    Kim K; Yu M; Zong X; Chiu J; Fang D; Seo YS; Hsiao BS; Chu B; Hadjiargyrou M
    Biomaterials; 2003 Dec; 24(27):4977-85. PubMed ID: 14559011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foreign body reaction associated with PET and PET/chitosan electrospun nanofibrous abdominal meshes.
    Veleirinho B; Coelho DS; Dias PF; Maraschin M; Pinto R; Cargnin-Ferreira E; Peixoto A; Souza JA; Ribeiro-do-Valle RM; Lopes-da-Silva JA
    PLoS One; 2014; 9(4):e95293. PubMed ID: 24740104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels.
    Qiao M; Chen D; Ma X; Liu Y
    Int J Pharm; 2005 Apr; 294(1-2):103-12. PubMed ID: 15814234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amphiphilic Crosslinked Four-Armed Poly(lactic-
    Dai J; Zhang Z; Bernaerts KV; Zhang Q; Zhang T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2428-2436. PubMed ID: 35588538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.
    Kaplan J; Grinstaff M
    J Vis Exp; 2015 Aug; (102):e53117. PubMed ID: 26383018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amniotic epithelial stem cell biocompatibility for electrospun poly(lactide-co-glycolide), poly(ε-caprolactone), poly(lactic acid) scaffolds.
    Russo V; Tammaro L; Di Marcantonio L; Sorrentino A; Ancora M; Valbonetti L; Turriani M; Martelli A; Cammà C; Barboni B
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():321-9. PubMed ID: 27612719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prevention of postsurgery-induced abdominal adhesions by electrospun bioabsorbable nanofibrous poly(lactide-co-glycolide)-based membranes.
    Zong X; Li S; Chen E; Garlick B; Kim KS; Fang D; Chiu J; Zimmerman T; Brathwaite C; Hsiao BS; Chu B
    Ann Surg; 2004 Nov; 240(5):910-5. PubMed ID: 15492575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence imaging enabled poly(lactide-co-glycolide).
    Hu J; Guo J; Xie Z; Shan D; Gerhard E; Qian G; Yang J
    Acta Biomater; 2016 Jan; 29():307-319. PubMed ID: 26463014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermogelling biodegradable copolymer aqueous solutions for injectable protein delivery and tissue engineering.
    Jeong B; Lee KM; Gutowska A; An YH
    Biomacromolecules; 2002; 3(4):865-8. PubMed ID: 12099835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospun meshes possessing region-wise differences in fiber orientation, diameter, chemistry and mechanical properties for engineering bone-ligament-bone tissues.
    Samavedi S; Vaidya P; Gaddam P; Whittington AR; Goldstein AS
    Biotechnol Bioeng; 2014 Dec; 111(12):2549-59. PubMed ID: 24898875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological compatibility, thermal and in vitro simulated degradation for poly(p-dioxanone)/poly(lactide-co-glycolide)/poly(ethylene succinate-co-glycolide).
    Zhong G; Liu Y; Liu C; Li X; Lin J; Lanzon AL; Zhang H; Chen M
    J Biomed Mater Res B Appl Biomater; 2021 Nov; 109(11):1817-1835. PubMed ID: 33894107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Bioresorbable Hydrophilic-Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering.
    Lins LC; Wianny F; Livi S; Hidalgo IA; Dehay C; Duchet-Rumeau J; Gérard JF
    Biomacromolecules; 2016 Oct; 17(10):3172-3187. PubMed ID: 27629596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic activity of nanonized pearl powder/poly (lactide-co-glycolide) composite scaffolds for bone tissue engineering.
    Yang YL; Chang CH; Huang CC; Kao WM; Liu WC; Liu HW
    Biomed Mater Eng; 2014; 24(1):979-85. PubMed ID: 24211987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers.
    Xiong X; Li Q; Lu JW; Guo ZX; Sun ZH; Yu J
    J Biomater Sci Polym Ed; 2012; 23(9):1217-30. PubMed ID: 21639995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superhydrophobic materials for tunable drug release: using displacement of air to control delivery rates.
    Yohe ST; Colson YL; Grinstaff MW
    J Am Chem Soc; 2012 Feb; 134(4):2016-9. PubMed ID: 22279966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative degradation study of biodegradable microspheres of poly(DL-lactide-co-glycolide) with poly(ethyleneglycol) derivates.
    Garcia JT; Fariña JB; Munguía O; Llabrés M
    J Microencapsul; 1999; 16(1):83-94. PubMed ID: 9972505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of poly(lactic-co-glycolic acid) (PLGA) degradability on the apatite-forming capacity of electrospun PLGA/SiO(2)-CaO nonwoven composite fabrics.
    Kim IA; Rhee SH
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):218-26. PubMed ID: 20091921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.