These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 24901293)

  • 1. Energy transfer from a single semiconductor nanocrystal to dye molecules.
    Hua Z; Xu Q; Huang X; Zhang C; Wang X; Xiao M
    ACS Nano; 2014 Jul; 8(7):7060-6. PubMed ID: 24901293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Transfer of Biexcitons in a Single Semiconductor Nanocrystal.
    Huang X; Xu Q; Zhang C; Wang X; Xiao M
    Nano Lett; 2016 Apr; 16(4):2492-6. PubMed ID: 27020482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time- and polarization-resolved optical spectroscopy of colloidal CdSe nanocrystal quantum dots in high magnetic fields.
    Furis M; Hollingsworth JA; Klimov VI; Crooker SA
    J Phys Chem B; 2005 Aug; 109(32):15332-8. PubMed ID: 16852944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature- and field-dependent energy transfer in CdSe nanocrystal aggregates studied by magneto-photoluminescence spectroscopy.
    Blumling DE; Tokumoto T; McGill S; Knappenberger KL
    Phys Chem Chem Phys; 2012 Aug; 14(31):11053-9. PubMed ID: 22767253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects.
    Su XR; Zhang W; Zhou L; Peng XN; Wang QQ
    Opt Express; 2010 Mar; 18(7):6516-21. PubMed ID: 20389674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble-level energy transfer measurements can reveal the spatial distribution of defect sites in semiconductor nanocrystals.
    Nilsson ZN; Beck LM; Sambur JB
    J Chem Phys; 2021 Feb; 154(5):054704. PubMed ID: 33557543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving effective terminal exciton delivery in quantum dot antenna-sensitized multistep DNA photonic wires.
    Spillmann CM; Ancona MG; Buckhout-White S; Algar WR; Stewart MH; Susumu K; Huston AL; Goldman ER; Medintz IL
    ACS Nano; 2013 Aug; 7(8):7101-18. PubMed ID: 23844838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanocrystal-Dye Interactions: Studying the Feasibility of Co-Sensitization of Dyes with Semiconductor Nanocrystals.
    Mittal M; Sapra S
    Chemphyschem; 2017 Sep; 18(18):2509-2516. PubMed ID: 28758340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence.
    Schaller RD; Sykora M; Jeong S; Klimov VI
    J Phys Chem B; 2006 Dec; 110(50):25332-8. PubMed ID: 17165979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of non-FRET photoluminescence quenching in nanoassemblies from semiconductor quantum dots and dye molecules.
    Stupak AP; Blaudeck T; Zenkevich EI; Krause S; von Borczyskowski C
    Phys Chem Chem Phys; 2018 Jul; 20(27):18579-18600. PubMed ID: 29953143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties.
    Yang Y; Chen O; Angerhofer A; Cao YC
    Chemistry; 2009; 15(13):3186-97. PubMed ID: 19206119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Interference in a Single Perovskite Nanocrystal.
    Lv Y; Yin C; Zhang C; Yu WW; Wang X; Zhang Y; Xiao M
    Nano Lett; 2019 Jul; 19(7):4442-4447. PubMed ID: 31185175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy relay from an unconventional yellow dye to CdS/CdSe quantum dots for enhanced solar cell performance.
    Narayanan R; Das A; Deepa M; Srivastava AK
    Chemphyschem; 2013 Dec; 14(17):4010-21. PubMed ID: 24259302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quenching of photoluminescence in conjugates of quantum dots and single-walled carbon nanotube.
    Biju V; Itoh T; Baba Y; Ishikawa M
    J Phys Chem B; 2006 Dec; 110(51):26068-74. PubMed ID: 17181259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation principles and ligand dynamics of nanoassemblies of CdSe quantum dots and functionalised dye molecules.
    Blaudeck T; Zenkevich EI; Abdel-Mottaleb M; Szwaykowska K; Kowerko D; Cichos F; von Borczyskowski C
    Chemphyschem; 2012 Mar; 13(4):959-72. PubMed ID: 22213596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical control of Förster energy transfer.
    Becker K; Lupton JM; Müller J; Rogach AL; Talapin DV; Weller H; Feldmann J
    Nat Mater; 2006 Oct; 5(10):777-81. PubMed ID: 16998470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of scanning probes with semiconductor nanocrystals; physical mechanism and basis for near-field optical imaging.
    Ebenstein Y; Yoskovitz E; Costi R; Aharoni A; Banin U
    J Phys Chem A; 2006 Jul; 110(27):8297-303. PubMed ID: 16821813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.
    Ren T; Erker W; Basché T; Schärtl W
    Langmuir; 2010 Dec; 26(23):17981-8. PubMed ID: 21062064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules.
    Kovalev D; Gross E; Künzner N; Koch F; Timoshenko VY; Fujii M
    Phys Rev Lett; 2002 Sep; 89(13):137401. PubMed ID: 12225061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.