BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 24901367)

  • 1. Defective i6A37 modification of mitochondrial and cytosolic tRNAs results from pathogenic mutations in TRIT1 and its substrate tRNA.
    Yarham JW; Lamichhane TN; Pyle A; Mattijssen S; Baruffini E; Bruni F; Donnini C; Vassilev A; He L; Blakely EL; Griffin H; Santibanez-Koref M; Bindoff LA; Ferrero I; Chinnery PF; McFarland R; Maraia RJ; Taylor RW
    PLoS Genet; 2014 Jun; 10(6):e1004424. PubMed ID: 24901367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles.
    Khalique A; Mattijssen S; Haddad AF; Chaudhry S; Maraia RJ
    PLoS Genet; 2020 Apr; 16(4):e1008330. PubMed ID: 32324744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human cells have a limited set of tRNA anticodon loop substrates of the tRNA isopentenyltransferase TRIT1 tumor suppressor.
    Lamichhane TN; Mattijssen S; Maraia RJ
    Mol Cell Biol; 2013 Dec; 33(24):4900-8. PubMed ID: 24126054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lack of tRNA-i6A modification causes mitochondrial-like metabolic deficiency in S. pombe by limiting activity of cytosolic tRNATyr, not mito-tRNA.
    Lamichhane TN; Arimbasseri AG; Rijal K; Iben JR; Wei FY; Tomizawa K; Maraia RJ
    RNA; 2016 Apr; 22(4):583-96. PubMed ID: 26857223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity and diversity of tRNA anticodon determinants of substrate recognition by eukaryotic A37 isopentenyltransferases.
    Lamichhane TN; Blewett NH; Maraia RJ
    RNA; 2011 Oct; 17(10):1846-57. PubMed ID: 21873461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lack of tRNA modification isopentenyl-A37 alters mRNA decoding and causes metabolic deficiencies in fission yeast.
    Lamichhane TN; Blewett NH; Crawford AK; Cherkasova VA; Iben JR; Begley TJ; Farabaugh PJ; Maraia RJ
    Mol Cell Biol; 2013 Aug; 33(15):2918-29. PubMed ID: 23716598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRIT1 deficiency: Two novel patients with four novel variants.
    Smol T; Brunelle P; Caumes R; Boute-Benejean O; Thuillier C; Figeac M; Ait-Yahya E; Bonte F; Mau-Them FT; Thauvin-Robinet C; Faivre L; Roche-Lestienne C; Manouvrier-Hanu S; Petit F; Ghoumid J
    Eur J Med Genet; 2022 Nov; 65(11):104603. PubMed ID: 36049610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive diagnosis of TRIT1-related mitochondrial disorder by measuring i
    Takenouchi T; Wei FY; Suzuki H; Uehara T; Takahashi T; Okazaki Y; Kosaki K; Tomizawa K
    Am J Med Genet A; 2019 Aug; 179(8):1609-1614. PubMed ID: 31140736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matchmaking facilitates the diagnosis of an autosomal-recessive mitochondrial disease caused by biallelic mutation of the tRNA isopentenyltransferase (TRIT1) gene.
    Kernohan KD; Dyment DA; Pupavac M; Cramer Z; McBride A; Bernard G; Straub I; Tetreault M; Hartley T; Huang L; Sell E; Majewski J; Rosenblatt DS; Shoubridge E; Mhanni A; Myers T; Proud V; Vergano S; Spangler B; Farrow E; Kussman J; Safina N; ; Saunders C; Boycott KM; Thiffault I
    Hum Mutat; 2017 May; 38(5):511-516. PubMed ID: 28185376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.
    Almalki A; Alston CL; Parker A; Simonic I; Mehta SG; He L; Reza M; Oliveira JM; Lightowlers RN; McFarland R; Taylor RW; Chrzanowska-Lightowlers ZM
    Biochim Biophys Acta; 2014 Jan; 1842(1):56-64. PubMed ID: 24161539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria-specific RNA-modifying enzymes responsible for the biosynthesis of the wobble base in mitochondrial tRNAs. Implications for the molecular pathogenesis of human mitochondrial diseases.
    Umeda N; Suzuki T; Yukawa M; Ohya Y; Shindo H; Watanabe K; Suzuki T
    J Biol Chem; 2005 Jan; 280(2):1613-24. PubMed ID: 15509579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recessive Mutations in TRMT10C Cause Defects in Mitochondrial RNA Processing and Multiple Respiratory Chain Deficiencies.
    Metodiev MD; Thompson K; Alston CL; Morris AAM; He L; Assouline Z; Rio M; Bahi-Buisson N; Pyle A; Griffin H; Siira S; Filipovska A; Munnich A; Chinnery PF; McFarland R; Rötig A; Taylor RW
    Am J Hum Genet; 2016 May; 98(5):993-1000. PubMed ID: 27132592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells.
    Kolesnikova OA; Entelis NS; Jacquin-Becker C; Goltzene F; Chrzanowska-Lightowlers ZM; Lightowlers RN; Martin RP; Tarassov I
    Hum Mol Genet; 2004 Oct; 13(20):2519-34. PubMed ID: 15317755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial tRNAs as light strand replication origins: similarity between anticodon loops and the loop of the light strand replication origin predicts initiation of DNA replication.
    Seligmann H
    Biosystems; 2010 Feb; 99(2):85-93. PubMed ID: 19755136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The modified base isopentenyladenosine and its derivatives in tRNA.
    Schweizer U; Bohleber S; Fradejas-Villar N
    RNA Biol; 2017 Sep; 14(9):1197-1208. PubMed ID: 28277934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations.
    Möllers M; Maniura-Weber K; Kiseljakovic E; Bust M; Hayrapetyan A; Jaksch M; Helm M; Wiesner RJ; von Kleist-Retzow JC
    Nucleic Acids Res; 2005; 33(17):5647-58. PubMed ID: 16199753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolving specificity of tRNA 3-methyl-cytidine-32 (m3C32) modification: a subset of tRNAsSer requires N6-isopentenylation of A37.
    Arimbasseri AG; Iben J; Wei FY; Rijal K; Tomizawa K; Hafner M; Maraia RJ
    RNA; 2016 Sep; 22(9):1400-10. PubMed ID: 27354703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure.
    Motorin Y; Bec G; Tewari R; Grosjean H
    RNA; 1997 Jul; 3(7):721-33. PubMed ID: 9214656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The first Korean cases of combined oxidative phosphorylation deficiency 35 with two novel TRIT1 mutations in two siblings confirmed by clinical and molecular investigation.
    Yoo S; Kim YA; Yoon JY; Seo GH; Keum C; Cheon CK
    Brain Dev; 2021 Feb; 43(2):325-330. PubMed ID: 32948376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel type of + 1 frameshift suppressor: a base substitution in the anticodon stem of a yeast mitochondrial serine-tRNA causes frameshift suppression.
    Hüttenhofer A; Weiss-Brummer B; Dirheimer G; Martin RP
    EMBO J; 1990 Feb; 9(2):551-8. PubMed ID: 1689242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.