These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 24901496)

  • 1. DFT modeling of CO2 interaction with various aqueous amine structures.
    Davran-Candan T
    J Phys Chem A; 2014 Jun; 118(25):4582-90. PubMed ID: 24901496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the origin of preferred bicarbonate production from carbon dioxide (CO₂) capture in aqueous 2-amino-2-methyl-1-propanol (AMP).
    Stowe HM; Vilčiauskas L; Paek E; Hwang GS
    Phys Chem Chem Phys; 2015 Nov; 17(43):29184-92. PubMed ID: 26466331
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ab initio study of CO2 capture mechanisms in aqueous monoethanolamine: reaction pathways for the direct interconversion of carbamate and bicarbonate.
    Matsuzaki Y; Yamada H; Chowdhury FA; Higashii T; Onoda M
    J Phys Chem A; 2013 Sep; 117(38):9274-81. PubMed ID: 24003832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semicontinuum Solvation Modeling Improves Predictions of Carbamate Stability in the CO2 + Aqueous Amine Reaction.
    Sumon KZ; Bains CH; Markewich DJ; Henni A; East AL
    J Phys Chem B; 2015 Sep; 119(37):12256-64. PubMed ID: 26376581
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbonic anhydrase promotes the absorption rate of CO2 in post-combustion processes.
    Vinoba M; Bhagiyalakshmi M; Grace AN; Kim DH; Yoon Y; Nam SC; Baek IH; Jeong SK
    J Phys Chem B; 2013 May; 117(18):5683-90. PubMed ID: 23621860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction mechanisms of aqueous monoethanolamine with carbon dioxide: a combined quantum chemical and molecular dynamics study.
    Hwang GS; Stowe HM; Paek E; Manogaran D
    Phys Chem Chem Phys; 2015 Jan; 17(2):831-9. PubMed ID: 25382097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal characteristics of CO2 using aqueous MEA/AMP solutions in the absorption and regeneration process.
    Choi WJ; Seo JB; Jang SY; Jung JH; Oh KJ
    J Environ Sci (China); 2009; 21(7):907-13. PubMed ID: 19862955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental investigations and the modeling approach for CO
    Li T; Yang C; Tantikhajorngosol P; Sema T; Shi H; Tontiwachwuthikul P
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):69402-69423. PubMed ID: 35567679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory study on carbon dioxide absorption into aqueous solutions of 2-amino-2-methyl-1-propanol using a continuum solvation model.
    Yamada H; Matsuzaki Y; Higashii T; Kazama S
    J Phys Chem A; 2011 Apr; 115(14):3079-86. PubMed ID: 21413768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and computational study of CO2 storage and sequestration with aqueous 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) solutions.
    Oktavian R; Taha M; Lee MJ
    J Phys Chem A; 2014 Dec; 118(49):11572-82. PubMed ID: 25388218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive kinetic and thermodynamic study of the reactions of CO2(aq) and HCO3(-) with monoethanolamine (MEA) in aqueous solution.
    Conway W; Wang X; Fernandes D; Burns R; Lawrance G; Puxty G; Maeder M
    J Phys Chem A; 2011 Dec; 115(50):14340-9. PubMed ID: 22035132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and mechanism of carbamate formation from CO2(aq), carbonate species, and monoethanolamine in aqueous solution.
    McCann N; Phan D; Wang X; Conway W; Burns R; Attalla M; Puxty G; Maeder M
    J Phys Chem A; 2009 Apr; 113(17):5022-9. PubMed ID: 19338322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of predominant urea formation from thermal degradation of CO
    Yoon B; Hwang GS
    Phys Chem Chem Phys; 2020 Aug; 22(30):17336-17343. PubMed ID: 32696788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The CO
    Shi H; Cheng X; Peng J; Feng H; Tontiwachwuthikul P; Hu J
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40686-40700. PubMed ID: 35083697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Ma C; Pietrucci F; Andreoni W
    Molecules; 2023 Sep; 28(18):. PubMed ID: 37764223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational study of the heats of reaction of substituted monoethanolamine with CO2.
    Xie HB; Johnson JK; Perry RJ; Genovese S; Wood BR
    J Phys Chem A; 2011 Jan; 115(3):342-50. PubMed ID: 21174422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleophilicity and accessibility calculations of alkanolamines: applications to carbon dioxide absorption reactions.
    Jhon YH; Shim JG; Kim JH; Lee JH; Jang KR; Kim J
    J Phys Chem A; 2010 Dec; 114(49):12907-13. PubMed ID: 21080721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Blending Ratio and Temperature on CO
    Choi BK; Kim SM; Lee JS; Park YC; Chun DH; Shin HY; Sung HJ; Min BM; Moon JH
    ACS Omega; 2020 Nov; 5(44):28738-28748. PubMed ID: 33195927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermolecular interactions upon carbon dioxide capture in deep-eutectic solvents.
    Shukla SK; Mikkola JP
    Phys Chem Chem Phys; 2018 Oct; 20(38):24591-24601. PubMed ID: 30229246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular insights into the enhanced rate of CO
    Stowe HM; Hwang GS
    Phys Chem Chem Phys; 2017 Dec; 19(47):32116-32124. PubMed ID: 29182169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.