These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24901639)

  • 21. Structure-critical distribution of aromatic residues in the fibronectin type III protein family.
    Hoxha E; Campion SR
    Protein J; 2014 Apr; 33(2):165-73. PubMed ID: 24563228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.
    Fernández IS; Ruíz-Dueñas FJ; Santillana E; Ferreira P; Martínez MJ; Martínez AT; Romero A
    Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1196-205. PubMed ID: 19923715
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and biochemical analyses of regio- and stereospecificities observed in a type II polyketide ketoreductase.
    Javidpour P; Korman TP; Shakya G; Tsai SC
    Biochemistry; 2011 May; 50(21):4638-49. PubMed ID: 21506596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode.
    Ye S; Von Delft F; Brooun A; Knuth MW; Swanson RV; McRee DE
    J Bacteriol; 2003 Jul; 185(14):4144-51. PubMed ID: 12837789
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of key residues and membrane association domains in retinol dehydrogenase 10.
    Takahashi Y; Moiseyev G; Farjo K; Ma JX
    Biochem J; 2009 Apr; 419(1):113-22, 1 p following 122. PubMed ID: 19102727
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding the importance of the aromatic amino-acid residues as hot-spots.
    Moreira IS; Martins JM; Ramos RM; Fernandes PA; Ramos MJ
    Biochim Biophys Acta; 2013 Jan; 1834(1):404-14. PubMed ID: 22842194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural and functional analysis of C2-type ketoreductases from modular polyketide synthases.
    Zheng J; Keatinge-Clay AT
    J Mol Biol; 2011 Jul; 410(1):105-17. PubMed ID: 21570406
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iterative type II polyketide synthases, cyclases and ketoreductases exhibit context-dependent behavior in the biosynthesis of linear and angular decapolyketides.
    Meurer G; Gerlitz M; Wendt-Pienkowski E; Vining LC; Rohr J; Hutchinson CR
    Chem Biol; 1997 Jun; 4(6):433-43. PubMed ID: 9224566
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and mechanistic analysis of a novel class of shikimate dehydrogenases: evidence for a conserved catalytic mechanism in the shikimate dehydrogenase family.
    Peek J; Lee J; Hu S; Senisterra G; Christendat D
    Biochemistry; 2011 Oct; 50(40):8616-27. PubMed ID: 21846128
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Epimerase and Reductase Activities of Polyketide Synthase Ketoreductase Domains Utilize the Same Conserved Tyrosine and Serine Residues.
    Xie X; Garg A; Keatinge-Clay AT; Khosla C; Cane DE
    Biochemistry; 2016 Mar; 55(8):1179-86. PubMed ID: 26863427
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure/function analysis of a dUTPase: catalytic mechanism of a potential chemotherapeutic target.
    Harris JM; McIntosh EM; Muscat GE
    J Mol Biol; 1999 Apr; 288(2):275-87. PubMed ID: 10329142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evidence for dynamic clustering of carboxy-terminal aromatic amino acids in TonB-dependent energy transduction.
    Ghosh J; Postle K
    Mol Microbiol; 2004 Jan; 51(1):203-13. PubMed ID: 14651622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modified substrate specificity of L-hydroxyisocaproate dehydrogenase derived from structure-based protein engineering.
    Feil IK; Hendle J; Schomburg D
    Protein Eng; 1997 Mar; 10(3):255-62. PubMed ID: 9153075
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of aromatic amino acid residues in conserved region VI of the large polymerase of vesicular stomatitis virus is essential for both guanine-N-7 and ribose 2'-O methyltransferases.
    Zhang X; Wei Y; Ma Y; Hu S; Li J
    Virology; 2010 Dec; 408(2):241-52. PubMed ID: 20961592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional analysis of conserved aromatic amino acids in the discoidin domain of Paenibacillus beta-1,3-glucanase.
    Cheng YM; Hsieh FC; Meng M
    Microb Cell Fact; 2009 Nov; 8():62. PubMed ID: 19930717
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Key residues responsible for acyl carrier protein and beta-ketoacyl-acyl carrier protein reductase (FabG) interaction.
    Zhang YM; Wu B; Zheng J; Rock CO
    J Biol Chem; 2003 Dec; 278(52):52935-43. PubMed ID: 14527946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The determinants of activity and specificity in actinorhodin type II polyketide ketoreductase.
    Javidpour P; Bruegger J; Srithahan S; Korman TP; Crump MP; Crosby J; Burkart MD; Tsai SC
    Chem Biol; 2013 Oct; 20(10):1225-34. PubMed ID: 24035284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional insights into (S)-ureidoglycolate dehydrogenase, a metabolic branch point enzyme in nitrogen utilization.
    Kim MI; Shin I; Cho S; Lee J; Rhee S
    PLoS One; 2012; 7(12):e52066. PubMed ID: 23284870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conserved residue clusters at protein-protein interfaces and their use in binding site identification.
    Guharoy M; Chakrabarti P
    BMC Bioinformatics; 2010 May; 11():286. PubMed ID: 20507585
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid residues in the GIY-YIG endonuclease II of phage T4 affecting sequence recognition and binding as well as catalysis.
    Lagerbäck P; Carlson K
    J Bacteriol; 2008 Aug; 190(16):5533-44. PubMed ID: 18539732
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.