These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24901843)

  • 1. Stepping on obstacles with a sensory substitution device on the lower leg: practice without vision is more beneficial than practice with vision.
    Lobo L; Travieso D; Barrientos A; Jacobs DM
    PLoS One; 2014; 9(6):e98801. PubMed ID: 24901843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action-contingent vibrotactile flow facilitates the detection of ground level obstacles with a partly virtual sensory substitution device.
    Díaz A; Barrientos A; Jacobs DM; Travieso D
    Hum Mov Sci; 2012 Dec; 31(6):1571-84. PubMed ID: 22939849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensory substitution: Using a vibrotactile device to orient and walk to targets.
    Lobo L; Travieso D; Jacobs DM; Rodger M; Craig CM
    J Exp Psychol Appl; 2018 Mar; 24(1):108-124. PubMed ID: 29595306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional performance of a vibrotactile sensory substitution device in people with profound vision loss.
    Jin R; Petoe MA; McCarthy CD; Stefopoulos S; Battiwalla X; McGinley J; Ayton LN
    Optom Vis Sci; 2024 Jun; 101(6):358-367. PubMed ID: 38990235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpersonal synchronization during side by side treadmill walking is influenced by leg length differential and altered sensory feedback.
    Nessler JA; Gilliland SJ
    Hum Mov Sci; 2009 Dec; 28(6):772-85. PubMed ID: 19796834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual guidance of landing behaviour when stepping down to a new level.
    Buckley JG; MacLellan MJ; Tucker MW; Scally AJ; Bennett SJ
    Exp Brain Res; 2008 Jan; 184(2):223-32. PubMed ID: 17726604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast, accurate reaching movements with a visual-to-auditory sensory substitution device.
    Levy-Tzedek S; Hanassy S; Abboud S; Maidenbaum S; Amedi A
    Restor Neurol Neurosci; 2012; 30(4):313-23. PubMed ID: 22596353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation.
    Stepp CE; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):31-7. PubMed ID: 21997322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory substitution: The affordance of passability, body-scaled perception, and exploratory movements.
    de Paz C; Travieso D; Ibáñez-Gijón J; Bravo M; Lobo L; Jacobs DM
    PLoS One; 2019; 14(3):e0213342. PubMed ID: 30917133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of a visual-to-auditory sensory substitution device using interactive genetic algorithms.
    Wright T; Ward J
    Q J Exp Psychol (Hove); 2013 Aug; 66(8):1620-38. PubMed ID: 23298393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seeing 'where' through the ears: effects of learning-by-doing and long-term sensory deprivation on localization based on image-to-sound substitution.
    Proulx MJ; Stoerig P; Ludowig E; Knoll I
    PLoS One; 2008 Mar; 3(3):e1840. PubMed ID: 18364998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrotactile and vibrotactile displays for sensory substitution systems.
    Kaczmarek KA; Webster JG; Bach-y-Rita P; Tompkins WJ
    IEEE Trans Biomed Eng; 1991 Jan; 38(1):1-16. PubMed ID: 2026426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in task parameters during walking prism adaptation influence the subsequent generalization pattern.
    Alexander MS; Flodin BW; Marigold DS
    J Neurophysiol; 2013 May; 109(10):2495-504. PubMed ID: 23446691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visuomotor control of step descent: evidence of specialised role of the lower visual field.
    Timmis MA; Bennett SJ; Buckley JG
    Exp Brain Res; 2009 May; 195(2):219-27. PubMed ID: 19333588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The specificity of practice hypothesis in goal-directed movements: visual dominance or proprioception neglect?
    Toussaint L; Meugnot A; Badets A; Chesnet D; Proteau L
    Psychol Res; 2017 Mar; 81(2):407-414. PubMed ID: 26873383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seeing with sound? exploring different characteristics of a visual-to-auditory sensory substitution device.
    Brown D; Macpherson T; Ward J
    Perception; 2011; 40(9):1120-35. PubMed ID: 22208131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutaneous reflex modulation during obstacle avoidance under conditions of normal and degraded visual input.
    Marigold DS; Chang AJ; Lajoie K
    Exp Brain Res; 2017 Aug; 235(8):2483-2493. PubMed ID: 28512726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obstacle avoidance during locomotion using haptic information in normally sighted humans.
    Patla AE; Davies TC; Niechwiej E
    Exp Brain Res; 2004 Mar; 155(2):173-85. PubMed ID: 14770274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inherent problems of attempts to apply sonar and vibrotactile sensory aid technology to the perceptual needs of the blind.
    Easton RD
    Optom Vis Sci; 1992 Jan; 69(1):3-14. PubMed ID: 1741108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.