These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 24901937)

  • 1. A day in the life of fish larvae: modeling foraging and growth using quirks.
    Huebert KB; Peck MA
    PLoS One; 2014; 9(6):e98205. PubMed ID: 24901937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The costs and trade-offs of optimal foraging in marine fish larvae.
    Hauss H; Schwabe L; Peck MA
    J Anim Ecol; 2023 May; 92(5):1016-1028. PubMed ID: 36931657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in growth and survival between cod Gadus morhua and herring Clupea harengus early stages co-reared at variable prey concentrations.
    Folkvord A; Vollset KW; Catalán IA
    J Fish Biol; 2015 Nov; 87(5):1176-90. PubMed ID: 26412336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of potential predictor variables on gastric evacuation in Atlantic cod Gadus morhua feeding on fish prey: parameterization of a generic model.
    Andersen NG
    J Fish Biol; 2012 Mar; 80(3):595-612. PubMed ID: 22380555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predator bioenergetics and the prey size spectrum: do foraging costs determine fish production?
    Giacomini HC; Shuter BJ; Lester NP
    J Theor Biol; 2013 Sep; 332():249-60. PubMed ID: 23685066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interacting trophic forcing and the population dynamics of herring.
    Lindegren M; Ostman O; Gårdmark A
    Ecology; 2011 Jul; 92(7):1407-13. PubMed ID: 21870614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A metacommunity perspective on source–sink dynamics and management: the Baltic Sea as a case study.
    Lindegren M; Andersen KH; Casini M; Neuenfeldt S
    Ecol Appl; 2014; 24(7):1820-32. PubMed ID: 29210240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individual-based energetic model suggests bottom up mechanisms for the impact of coastal hypoxia on Pacific harbor seal (Phoca vitulina richardii) foraging behavior.
    Steingass S; Horning M
    J Theor Biol; 2017 Mar; 416():190-198. PubMed ID: 28082128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predator species related adaptive changes in larval growth and digestive physiology.
    Jiang B; Johansson F; Stoks R; Mauersberger R; Mikolajewski DJ
    J Insect Physiol; 2019 Apr; 114():23-29. PubMed ID: 30716335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of prey size on investigating prey availability of larval fishes.
    Huang YH; Tao HH; Gong GC; Hsieh CH
    PLoS One; 2021; 16(5):e0251344. PubMed ID: 34003828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wasp-waist interactions in the North Sea ecosystem.
    Fauchald P; Skov H; Skern-Mauritzen M; Johns D; Tveraa T
    PLoS One; 2011; 6(7):e22729. PubMed ID: 21829494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Infestation rates of the main commercial fish species with larvae of contracaecum osculatum (Rudolphi, 1802) (Nematoda: Anisakidae) in Russian waters of the SoutH Baltic in 2000-2012].
    Rodiuk GN
    Parazitologiia; 2014; 48(3):220-33. PubMed ID: 25693327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predator-prey reversal: a possible mechanism for ecosystem hysteresis in the North Sea?
    Fauchald P
    Ecology; 2010 Aug; 91(8):2191-7. PubMed ID: 20836439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of extreme climate and bioinvasion on temporal coupling of spring herring (Clupea harengus m.) larvae and their prey.
    Arula T; Ojaveer H; Klais R
    Mar Environ Res; 2014 Dec; 102():102-9. PubMed ID: 24933435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foraging habitat determines predator-prey size relationships in marine fishes.
    Griffiths D
    J Fish Biol; 2020 Oct; 97(4):964-973. PubMed ID: 32613622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal impacts on the growth, development and ontogeny of critical swimming speed in Atlantic herring larvae.
    Moyano M; Illing B; Peschutter P; Huebert KB; Peck MA
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jul; 197():23-34. PubMed ID: 26945594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial distribution of fishes in a Northwest Atlantic ecosystem in relation to risk of predation by a marine mammal.
    Swain DP; Benoît HP; Hammill MO
    J Anim Ecol; 2015 Sep; 84(5):1286-98. PubMed ID: 25976520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal plankton-fish interactions: light regime, prey phenology, and herring foraging.
    Varpe Ø; Fiksen Ø
    Ecology; 2010 Feb; 91(2):311-8. PubMed ID: 20391994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predators with multiple ontogenetic niche shifts have limited potential for population growth and top-down control of their prey.
    van Leeuwen A; Huss M; Gårdmark A; Casini M; Vitale F; Hjelm J; Persson L; de Roos AM
    Am Nat; 2013 Jul; 182(1):53-66. PubMed ID: 23778226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-dependent adaptation allows fish to meet their food across their species' range.
    Neuheimer AB; MacKenzie BR; Payne MR
    Sci Adv; 2018 Jul; 4(7):eaar4349. PubMed ID: 30050985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.