These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 24903475)
1. Investigation of acoustic streaming patterns around oscillating sharp edges. Nama N; Huang PH; Huang TJ; Costanzo F Lab Chip; 2014 Aug; 14(15):2824-36. PubMed ID: 24903475 [TBL] [Abstract][Full Text] [Related]
2. An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Huang PH; Xie Y; Ahmed D; Rufo J; Nama N; Chen Y; Chan CY; Huang TJ Lab Chip; 2013 Oct; 13(19):3847-52. PubMed ID: 23896797 [TBL] [Abstract][Full Text] [Related]
3. Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis. Antfolk M; Muller PB; Augustsson P; Bruus H; Laurell T Lab Chip; 2014 Aug; 14(15):2791-9. PubMed ID: 24895052 [TBL] [Abstract][Full Text] [Related]
4. Numerical study of the effect of channel aspect ratio on particle focusing in acoustophoretic devices. Spigarelli L; Vasile NS; Pirri CF; Canavese G Sci Rep; 2020 Nov; 10(1):19447. PubMed ID: 33173108 [TBL] [Abstract][Full Text] [Related]
5. Integration of acoustic micromixing with cyclic olefin copolymer microfluidics for enhanced lab-on-a-chip applications in nanoscale liposome synthesis. Agha A; Abu-Nada E; Alazzam A Biofabrication; 2024 Jul; 16(4):. PubMed ID: 38942007 [TBL] [Abstract][Full Text] [Related]
6. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices. Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539 [TBL] [Abstract][Full Text] [Related]
7. Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming. Collins DJ; Khoo BL; Ma Z; Winkler A; Weser R; Schmidt H; Han J; Ai Y Lab Chip; 2017 May; 17(10):1769-1777. PubMed ID: 28394386 [TBL] [Abstract][Full Text] [Related]
8. A reliable and programmable acoustofluidic pump powered by oscillating sharp-edge structures. Huang PH; Nama N; Mao Z; Li P; Rufo J; Chen Y; Xie Y; Wei CH; Wang L; Huang TJ Lab Chip; 2014 Nov; 14(22):4319-23. PubMed ID: 25188786 [TBL] [Abstract][Full Text] [Related]
9. Mixing enhancement in T-junction microchannel with acoustic streaming induced by triangular structure. Endaylalu SA; Tien WH Biomicrofluidics; 2021 May; 15(3):034102. PubMed ID: 33986902 [TBL] [Abstract][Full Text] [Related]
10. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles. Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570 [TBL] [Abstract][Full Text] [Related]
11. Submicron separation of microspheres via travelling surface acoustic waves. Destgeer G; Ha BH; Jung JH; Sung HJ Lab Chip; 2014 Dec; 14(24):4665-72. PubMed ID: 25312065 [TBL] [Abstract][Full Text] [Related]
12. Generating electric fields in PDMS microfluidic devices with salt water electrodes. Sciambi A; Abate AR Lab Chip; 2014 Aug; 14(15):2605-9. PubMed ID: 24671446 [TBL] [Abstract][Full Text] [Related]
13. A high-efficiency microfluidic device for size-selective trapping and sorting. Kim J; Erath J; Rodriguez A; Yang C Lab Chip; 2014 Jul; 14(14):2480-90. PubMed ID: 24850190 [TBL] [Abstract][Full Text] [Related]
14. Vibrating membrane with discontinuities for rapid and efficient microfluidic mixing. Phan HV; Coşkun MB; Şeşen M; Pandraud G; Neild A; Alan T Lab Chip; 2015 Nov; 15(21):4206-16. PubMed ID: 26381355 [TBL] [Abstract][Full Text] [Related]
15. A millisecond micromixer via single-bubble-based acoustic streaming. Ahmed D; Mao X; Shi J; Juluri BK; Huang TJ Lab Chip; 2009 Sep; 9(18):2738-41. PubMed ID: 19704991 [TBL] [Abstract][Full Text] [Related]
16. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Shi J; Ahmed D; Mao X; Lin SC; Lawit A; Huang TJ Lab Chip; 2009 Oct; 9(20):2890-5. PubMed ID: 19789740 [TBL] [Abstract][Full Text] [Related]
17. Controllable electrofusion of lipid vesicles: initiation and analysis of reactions within biomimetic containers. Robinson T; Verboket PE; Eyer K; Dittrich PS Lab Chip; 2014 Aug; 14(15):2852-9. PubMed ID: 24911345 [TBL] [Abstract][Full Text] [Related]
18. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Shi J; Huang H; Stratton Z; Huang Y; Huang TJ Lab Chip; 2009 Dec; 9(23):3354-9. PubMed ID: 19904400 [TBL] [Abstract][Full Text] [Related]