These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 24903774)

  • 1. Marangoni self-propelled capsules in a maze: pollutants 'sense and act' in complex channel environments.
    Zhao G; Pumera M
    Lab Chip; 2014 Aug; 14(15):2818-23. PubMed ID: 24903774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient biocatalytic degradation of pollutants by enzyme-releasing self-propelled motors.
    Orozco J; Vilela D; Valdés-Ramírez G; Fedorak Y; Escarpa A; Vazquez-Duhalt R; Wang J
    Chemistry; 2014 Mar; 20(10):2866-71. PubMed ID: 24500996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic column of water index-matched packed microspheres for label-free observation of water pollutants.
    Lanfranco R; Saez J; Abati D; Carzaniga T; Benito-Lopez F; Buscaglia M
    Mikrochim Acta; 2021 Mar; 188(4):143. PubMed ID: 33774708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The enhanced diffusional mixing for latex immunoagglutination assay in a microfluidic device.
    Han JH; Kim KS; Yoon JY
    Anal Chim Acta; 2007 Feb; 584(2):252-9. PubMed ID: 17386612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid-liquid interface motion of a capsule motor powered by the interlayer Marangoni effect.
    Zhao G; Pumera M
    J Phys Chem B; 2012 Sep; 116(35):10960-3. PubMed ID: 22894756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microfluidic device for bacteria detection in aqueous samples.
    Jha AK; Tripathi A; Bose A
    Environ Technol; 2011 Oct; 32(13-14):1661-7. PubMed ID: 22329157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weak bases and formation of a less soluble lauryl sulfate salt/complex in sodium lauryl sulfate (SLS) containing media.
    Bhattachar SN; Risley DS; Werawatganone P; Aburub A
    Int J Pharm; 2011 Jun; 412(1-2):95-8. PubMed ID: 21527324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylene bubble-powered autonomous capsules: towards in situ fuel.
    Moo JG; Wang H; Pumera M
    Chem Commun (Camb); 2014 Dec; 50(100):15849-51. PubMed ID: 25347401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent trends in nanomaterials applications in environmental monitoring and remediation.
    Das S; Sen B; Debnath N
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18333-44. PubMed ID: 26490920
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of sodium lauryl sulphate by coagulation/flocculation with Moringa oleifera seed extract.
    Beltrán-Heredia J; Sánchez-Martín J
    J Hazard Mater; 2009 May; 164(2-3):713-9. PubMed ID: 18824298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ionic surfactants on the flocculation and sorption of palladium and mercury in the aquatic environment.
    Turner A; Xu J
    Water Res; 2008 Jan; 42(1-2):318-26. PubMed ID: 17706263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective and sensitive chromo- and fluorogenic dual detection of anionic surfactants in water based on a pair of "on-off-on" fluorescent sensors.
    Qian J; Qian X; Xu Y
    Chemistry; 2009; 15(2):319-23. PubMed ID: 19035617
    [No Abstract]   [Full Text] [Related]  

  • 14. Superparamagnetic microspheres with controlled macroporosity generated in microfluidic devices.
    Paquet C; Jakubek ZJ; Simard B
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4934-41. PubMed ID: 22900593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion-based, high-yielding, and fast separation of different charged organics in water.
    Xuan M; Lin X; Shao J; Dai L; He Q
    Chemphyschem; 2015 Jan; 16(1):147-51. PubMed ID: 25413002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic nanomotors for environmental monitoring and water remediation.
    Soler L; Sánchez S
    Nanoscale; 2014 Jul; 6(13):7175-82. PubMed ID: 24752489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the flocculation and re-dissolution of trivalent lanthanide metal ions by sodium dodecyl sulfate in aqueous solutions.
    Pereira RF; Tapia MJ; Valente AJ; Evans RC; Burrows HD; Carvalho RA
    J Colloid Interface Sci; 2011 Feb; 354(2):670-6. PubMed ID: 21084096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing foam drainage using foam fractionation column with spiral internal for separation of sodium dodecyl sulfate.
    Yang QW; Wu ZL; Zhao YL; Wang Y; Li R
    J Hazard Mater; 2011 Sep; 192(3):1900-4. PubMed ID: 21784581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic fabrication of photo-responsive hydrogel capsules.
    Kim B; Soo Lee H; Kim J; Kim SH
    Chem Commun (Camb); 2013 Mar; 49(18):1865-7. PubMed ID: 23361355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel design of osmotic chitosan capsules characterized by asymmetric membrane structure for in situ formation of delivery orifice.
    Wang GM; Chen CH; Ho HO; Wang SS; Sheu MT
    Int J Pharm; 2006 Aug; 319(1-2):71-81. PubMed ID: 16701971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.