These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24904395)

  • 1. Emergence of task-dependent representations in working memory circuits.
    Savin C; Triesch J
    Front Comput Neurosci; 2014; 8():57. PubMed ID: 24904395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homeostatic Plasticity and STDP: Keeping a Neuron's Cool in a Fluctuating World.
    Watt AJ; Desai NS
    Front Synaptic Neurosci; 2010; 2():5. PubMed ID: 21423491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RM-SORN: a reward-modulated self-organizing recurrent neural network.
    Aswolinskiy W; Pipa G
    Front Comput Neurosci; 2015; 9():36. PubMed ID: 25852533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.
    Ruan H; Yao WD
    J Neurosci; 2017 Jan; 37(4):986-997. PubMed ID: 28123030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network self-organization explains the statistics and dynamics of synaptic connection strengths in cortex.
    Zheng P; Dimitrakakis C; Triesch J
    PLoS Comput Biol; 2013; 9(1):e1002848. PubMed ID: 23300431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning reward timing in cortex through reward dependent expression of synaptic plasticity.
    Gavornik JP; Shuler MG; Loewenstein Y; Bear MF; Shouval HZ
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6826-31. PubMed ID: 19346478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Working Memory Through Selective Gating and Attentional Tagging.
    Kruijne W; Bohte SM; Roelfsema PR; Olivers CNL
    Neural Comput; 2021 Jan; 33(1):1-40. PubMed ID: 33080159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Adaptive STDP Learning Rule for Neuromorphic Systems.
    Gautam A; Kohno T
    Front Neurosci; 2021; 15():741116. PubMed ID: 34630026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-layer network utilizing rewarded spike time dependent plasticity to learn a foraging task.
    Sanda P; Skorheim S; Bazhenov M
    PLoS Comput Biol; 2017 Sep; 13(9):e1005705. PubMed ID: 28961245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Computational Model of Working Memory Based on Spike-Timing-Dependent Plasticity.
    Huang QS; Wei H
    Front Comput Neurosci; 2021; 15():630999. PubMed ID: 33967727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Traces of semantization - from episodic to semantic memory in a spiking cortical network model.
    Chrysanthidis N; Fiebig F; Lansner A; Herman P
    eNeuro; 2022 Jul; 9(4):. PubMed ID: 35803714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational model of Basal Ganglia and its role in memory retrieval in rewarded visual memory tasks.
    Vitay J; Hamker FH
    Front Comput Neurosci; 2010; 4():. PubMed ID: 20725505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopamine-enabled anti-Hebbian timing-dependent plasticity in prefrontal circuitry.
    Ruan H; Saur T; Yao WD
    Front Neural Circuits; 2014; 8():38. PubMed ID: 24795571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised Learning in SNN via Reward-Modulated Spike-Timing-Dependent Plasticity for a Target Reaching Vehicle.
    Bing Z; Baumann I; Jiang Z; Huang K; Cai C; Knoll A
    Front Neurorobot; 2019; 13():18. PubMed ID: 31130854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity resembling spike-timing dependent synaptic plasticity: the evidence in human cortex.
    Müller-Dahlhaus F; Ziemann U; Classen J
    Front Synaptic Neurosci; 2010; 2():34. PubMed ID: 21423520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and computational aspects of signaling mechanisms of spike-timing-dependent plasticity.
    Urakubo H; Honda M; Tanaka K; Kuroda S
    HFSP J; 2009 Aug; 3(4):240-54. PubMed ID: 20119481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spike timing-dependent plasticity of neural circuits.
    Dan Y; Poo MM
    Neuron; 2004 Sep; 44(1):23-30. PubMed ID: 15450157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.