These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 24904528)

  • 41. Secretin inhibits cholangiocarcinoma growth via dysregulation of the cAMP-dependent signaling mechanisms of secretin receptor.
    Onori P; Wise C; Gaudio E; Franchitto A; Francis H; Carpino G; Lee V; Lam I; Miller T; Dostal DE; Glaser SS
    Int J Cancer; 2010 Jul; 127(1):43-54. PubMed ID: 19904746
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Secretin, glucagon, gastric inhibitory polypeptide, parathyroid hormone, and related peptides in the regulation of the hypothalamus- pituitary-adrenal axis.
    Nussdorfer GG; Bahçelioglu M; Neri G; Malendowicz LK
    Peptides; 2000 Feb; 21(2):309-24. PubMed ID: 10764961
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Expression and spatial distribution of secretin and secretin receptor in human cerebellum.
    Lee SM; Yung WH; Chen L; Chow BK
    Neuroreport; 2005 Feb; 16(3):219-22. PubMed ID: 15706223
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Secretin, 100 years later.
    Chey WY; Chang TM
    J Gastroenterol; 2003; 38(11):1025-35. PubMed ID: 14673718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Secretin, at the hub of water-salt homeostasis.
    Bai JJ; Tan CD; Chow BKC
    Am J Physiol Renal Physiol; 2017 May; 312(5):F852-F860. PubMed ID: 27279485
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiple actions of secretin in the human body.
    Lam IP; Siu FK; Chu JY; Chow BK
    Int Rev Cytol; 2008; 265():159-90. PubMed ID: 18275888
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of the secretin/secretin receptor axis in inflammatory cholangiocyte communication via extracellular vesicles.
    Sato K; Meng F; Venter J; Giang T; Glaser S; Alpini G
    Sci Rep; 2017 Sep; 7(1):11183. PubMed ID: 28894209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Post-weaning social isolation of rats leads to long-term disruption of the gut microbiota-immune-brain axis.
    Dunphy-Doherty F; O'Mahony SM; Peterson VL; O'Sullivan O; Crispie F; Cotter PD; Wigmore P; King MV; Cryan JF; Fone KCF
    Brain Behav Immun; 2018 Feb; 68():261-273. PubMed ID: 29104061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DISC1 in Astrocytes Influences Adult Neurogenesis and Hippocampus-Dependent Behaviors in Mice.
    Terrillion CE; Abazyan B; Yang Z; Crawford J; Shevelkin AV; Jouroukhin Y; Yoo KH; Cho CH; Roychaudhuri R; Snyder SH; Jang MH; Pletnikov MV
    Neuropsychopharmacology; 2017 Oct; 42(11):2242-2251. PubMed ID: 28631721
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Secretin and autism: a basic morphological study about the distribution of secretin in the nervous system.
    Köves K; Kausz M; Reser D; Illyés G; Takács J; Heinzlmann A; Gyenge E; Horváth K
    Regul Pept; 2004 Dec; 123(1-3):209-16. PubMed ID: 15518914
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation.
    Lin YT; Liu TY; Yang CY; Yu YL; Chen TC; Day YJ; Chang CC; Huang GJ; Chen JC
    Psychoneuroendocrinology; 2016 Sep; 71():73-85. PubMed ID: 27243477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Signaling mechanisms of secretin receptor.
    Siu FK; Lam IP; Chu JY; Chow BK
    Regul Pept; 2006 Nov; 137(1-2):95-104. PubMed ID: 16930743
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amylin receptor activation in the ventral tegmental area reduces motivated ingestive behavior.
    Mietlicki-Baase EG; McGrath LE; Koch-Laskowski K; Krawczyk J; Reiner DJ; Pham T; Nguyen CTN; Turner CA; Olivos DR; Wimmer ME; Schmidt HD; Hayes MR
    Neuropharmacology; 2017 Sep; 123():67-79. PubMed ID: 28552704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validation of SCT Methylation as a Hallmark Biomarker for Lung Cancers.
    Zhang YA; Ma X; Sathe A; Fujimoto J; Wistuba I; Lam S; Yatabe Y; Wang YW; Stastny V; Gao B; Larsen JE; Girard L; Liu X; Song K; Behrens C; Kalhor N; Xie Y; Zhang MQ; Minna JD; Gazdar AF
    J Thorac Oncol; 2016 Mar; 11(3):346-360. PubMed ID: 26725182
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Motor skills mediated through cerebellothalamic tracts projecting to the central lateral nucleus.
    Sakayori N; Kato S; Sugawara M; Setogawa S; Fukushima H; Ishikawa R; Kida S; Kobayashi K
    Mol Brain; 2019 Feb; 12(1):13. PubMed ID: 30736823
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tissue-specific and developmental expression of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in rat brain.
    D'Agata V; Cavallaro S; Stivala F; Canonico PL
    Eur J Neurosci; 1996 Feb; 8(2):310-8. PubMed ID: 8714702
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural hormonal regulation of exocrine pancreatic secretion.
    Chey WY; Chang T
    Pancreatology; 2001; 1(4):320-35. PubMed ID: 12120211
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The MONA LISA hypothesis in the time of leptin.
    Bray GA; York DA
    Recent Prog Horm Res; 1998; 53():95-117; discussion 117-8. PubMed ID: 9769705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantification of pancreatic zinc output as pancreatic function test: making the secretin-caerulein test applicable to clinical practice.
    Domínguez-Muñoz JE; Martinez SM; Leodolter A; Malfertheiner P
    Pancreatology; 2004; 4(1):57-62. PubMed ID: 14988659
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.