These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 24904956)

  • 1. Seamless Phase I/II Adaptive Design for Oncology Trials of Molecularly Targeted Agents.
    Wages NA; Tait C
    J Biopharm Stat; 2015; 25(5):903-20. PubMed ID: 24904956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved adaptive randomization strategies for a seamless Phase I/II dose-finding design.
    Yan D; Wages NA; Dressler EV
    J Biopharm Stat; 2019; 29(2):333-347. PubMed ID: 30451068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase I/II dose-finding design for molecularly targeted agent: Plateau determination using adaptive randomization.
    Riviere MK; Yuan Y; Jourdan JH; Dubois F; Zohar S
    Stat Methods Med Res; 2018 Feb; 27(2):466-479. PubMed ID: 26988926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-stage approach based on zone and dose findings for two-agent combination Phase I/II trials.
    Shimamura F; Hamada C; Matsui S; Hirakawa A
    J Biopharm Stat; 2018; 28(6):1025-1037. PubMed ID: 29420127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A utility-based Bayesian optimal interval (U-BOIN) phase I/II design to identify the optimal biological dose for targeted and immune therapies.
    Zhou Y; Lee JJ; Yuan Y
    Stat Med; 2019 Dec; 38(28):5299-5316. PubMed ID: 31621952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards using a full spectrum of early clinical trial data: a retrospective analysis to compare potential longitudinal categorical models for molecular targeted therapies in oncology.
    Colin P; Micallef S; Delattre M; Mancini P; Parent E
    Stat Med; 2015 Sep; 34(22):2999-3016. PubMed ID: 26059319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
    Guo B; Li Y
    Stat Med; 2015 Feb; 34(5):859-75. PubMed ID: 25413162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials.
    Lin R; Yin G
    Stat Med; 2017 Nov; 36(26):4106-4120. PubMed ID: 28786138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical controversies in clinical research: building the bridge to phase II-efficacy estimation in dose-expansion cohorts.
    Boonstra PS; Braun TM; Taylor JMG; Kidwell KM; Bellile EL; Daignault S; Zhao L; Griffith KA; Lawrence TS; Kalemkerian GP; Schipper MJ
    Ann Oncol; 2017 Jul; 28(7):1427-1435. PubMed ID: 28200082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dose-finding approach for genomic patterns in phase I trials.
    Kaneko S; Hirakawa A; Kakurai Y; Hamada C
    J Biopharm Stat; 2020 Sep; 30(5):834-853. PubMed ID: 32310707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TITE-BOIN-ET: Time-to-event Bayesian optimal interval design to accelerate dose-finding based on both efficacy and toxicity outcomes.
    Takeda K; Morita S; Taguri M
    Pharm Stat; 2020 May; 19(3):335-349. PubMed ID: 31829517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Phase I/II adaptive design for heterogeneous groups with application to a stereotactic body radiation therapy trial.
    Wages NA; Read PW; Petroni GR
    Pharm Stat; 2015; 14(4):302-10. PubMed ID: 25962576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repeated measures dose-finding design with time-trend detection in the presence of correlated toxicity data.
    Yin J; Paoletti X; Sargent DJ; Mandrekar SJ
    Clin Trials; 2017 Dec; 14(6):611-620. PubMed ID: 28764555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical designs for early phases of cancer clinical trials.
    Guan S
    J Biopharm Stat; 2012; 22(6):1109-26. PubMed ID: 23075011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian dose-finding design for phase I/II clinical trials with nonignorable dropouts.
    Guo B; Yuan Y
    Stat Med; 2015 May; 34(10):1721-32. PubMed ID: 25626676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian adaptive Phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes.
    Koopmeiners JS; Modiano J
    Clin Trials; 2014 Feb; 11(1):38-48. PubMed ID: 24082004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase I/II adaptive design for drug combination oncology trials.
    Wages NA; Conaway MR
    Stat Med; 2014 May; 33(12):1990-2003. PubMed ID: 24470329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of phase I dose-finding designs in clinical trials with monotonicity assumption violation.
    Abbas R; Rossoni C; Jaki T; Paoletti X; Mozgunov P
    Clin Trials; 2020 Oct; 17(5):522-534. PubMed ID: 32631095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Dose-Finding Method Based on Multiple Dosing in Two-Agent Combination Phase I Trials.
    Kakurai Y; Hirakawa A; Hamada C
    J Biopharm Stat; 2015; 25(5):1065-76. PubMed ID: 25369852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A trivariate continual reassessment method for phase I/II trials of toxicity, efficacy, and surrogate efficacy.
    Zhong W; Koopmeiners JS; Carlin BP
    Stat Med; 2012 Dec; 31(29):3885-95. PubMed ID: 22807126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.