BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24905009)

  • 1. Reaction kinetics for the biocatalytic conversion of phenazine-1-carboxylic acid to 2-hydroxyphenazine.
    Chen M; Cao H; Peng H; Hu H; Wang W; Zhang X
    PLoS One; 2014; 9(6):e98537. PubMed ID: 24905009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine.
    Liu K; Hu H; Wang W; Zhang X
    Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72.
    Huang L; Chen MM; Wang W; Hu HB; Peng HS; Xu YQ; Zhang XH
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):169-77. PubMed ID: 20857290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Production of 2-Hydroxyphenazine from Glycerol by a Two-Stage Fermentation Strategy in
    Yue SJ; Huang P; Li S; Jan M; Hu HB; Wang W; Zhang XH
    J Agric Food Chem; 2020 Jan; 68(2):561-566. PubMed ID: 31840510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid quantitative analysis of phenazine-1-carboxylic acid and 2-hydroxyphenazine from fermentation culture of Pseudomonas chlororaphis GP72 by capillary zone electrophoresis.
    Liu HM; Zhang XH; Huang XQ; Cao CX; Xu YQ
    Talanta; 2008 Jul; 76(2):276-81. PubMed ID: 18585277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72.
    Li S; Yue SJ; Huang P; Feng TT; Zhang HY; Yao RL; Wang W; Zhang XH; Hu HB
    J Appl Microbiol; 2022 Nov; 133(5):2790-2801. PubMed ID: 35870153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
    Wan Y; Liu H; Xian M; Huang W
    Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization and Engineering of
    Liu WH; Yue SJ; Feng TT; Li S; Huang P; Hu HB; Wang W; Zhang XH
    J Agric Food Chem; 2021 Apr; 69(16):4778-4784. PubMed ID: 33848158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84.
    Delaney SM; Mavrodi DV; Bonsall RF; Thomashow LS
    J Bacteriol; 2001 Jan; 183(1):318-27. PubMed ID: 11114932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling of antimicrobial metabolites of plant growth promoting
    Shahid I; Han J; Hardie D; Baig DN; Malik KA; Borchers CH; Mehnaz S
    3 Biotech; 2021 Feb; 11(2):48. PubMed ID: 33489669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.
    Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS
    Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights on the susceptibility of plant pathogenic fungi to phenazine-1-carboxylic acid and its chemical derivatives.
    Puopolo G; Masi M; Raio A; Andolfi A; Zoina A; Cimmino A; Evidente A
    Nat Prod Res; 2013; 27(11):956-66. PubMed ID: 22724439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites.
    Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X
    BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation, identification, and accumulation of 2-acetamidophenol in liquid cultures of the wheat take-all biocontrol agent Pseudomonas fluorescens 2-79.
    Slininger PJ; Burkhead KD; Schisler DA; Bothast RJ
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):376-81. PubMed ID: 11030575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Phenazine 2-Hydroxy-Phenazine-1-Carboxylic Acid Promotes Extracellular DNA Release and Has Broad Transcriptomic Consequences in Pseudomonas chlororaphis 30-84.
    Wang D; Yu JM; Dorosky RJ; Pierson LS; Pierson EA
    PLoS One; 2016; 11(1):e0148003. PubMed ID: 26812402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79.
    Mavrodi DV; Ksenzenko VN; Bonsall RF; Cook RJ; Boronin AM; Thomashow LS
    J Bacteriol; 1998 May; 180(9):2541-8. PubMed ID: 9573209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoate (PHA) Polymer Accumulation and
    Sharma PK; Munir RI; Plouffe J; Shah N; De Kievit T; Levin DB
    Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961128
    [No Abstract]   [Full Text] [Related]  

  • 18. Elucidation of antifungal metabolites produced by Pseudomonas aurantiaca IB5-10 with broad-spectrum antifungal activity.
    Park GK; Lim JH; Kim SD; Shim SH
    J Microbiol Biotechnol; 2012 Mar; 22(3):326-30. PubMed ID: 22450787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics, mechanism, and identification of photodegradation products of phenazine-1-carboxylic acid.
    Huasong P; Qingwen H; Bilal M; Wang W; Zhang X
    Environ Technol; 2020 Jun; 41(14):1848-1856. PubMed ID: 30477396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in
    Yu JM; Wang D; Pierson LS; Pierson EA
    Plant Pathol J; 2018 Feb; 34(1):44-58. PubMed ID: 29422787
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.