These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24905141)

  • 1. Aqueous (99)Tc, (129)I and (137)Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents.
    Li D; Kaplan DI; Knox AS; Crapse KP; Diprete DP
    J Environ Radioact; 2014 Oct; 136():56-63. PubMed ID: 24905141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of silica/ferrocyanide composite as a dual-function material for simultaneous removal of ¹³⁷Cs⁺ and ⁹⁹TcO₄⁻ from aqueous solutions.
    Mahmoud MR; Seliman AF
    Appl Radiat Isot; 2014 Sep; 91():141-54. PubMed ID: 24935117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.
    Borai EH; Harjula R; Malinen L; Paajanen A
    J Hazard Mater; 2009 Dec; 172(1):416-22. PubMed ID: 19656622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal capacity and chemical speciation of groundwater iodide (I
    Li D; Kaplan DI; Sams A; Powell BA; Knox AS
    J Environ Radioact; 2018 Dec; 192():505-512. PubMed ID: 30114621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clay permeable reactive barrier to remove Cs-137 from groundwater: Column experiments.
    De Pourcq K; Ayora C; García-Gutiérrez M; Missana T; Carrera J
    J Environ Radioact; 2015 Nov; 149():36-42. PubMed ID: 26197347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An estimate of the inventory of technetium-99 in the sub-tidal sediments of the Irish Sea.
    Jenkinson SB; McCubbin D; Kennedy PH; Dewar A; Bonfield R; Leonard KS
    J Environ Radioact; 2014 Jul; 133():40-7. PubMed ID: 23759825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site.
    Xu C; Kaplan DI; Zhang S; Athon M; Ho YF; Li HP; Yeager CM; Schwehr KA; Grandbois R; Wellman D; Santschi PH
    J Environ Radioact; 2015 Jan; 139():43-55. PubMed ID: 25464040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decommissioning of a nuclear power plant: determination of site-specific sorption coefficients for Co-60 and Cs-137.
    Delakowitz B; Meinrath G
    Isotopes Environ Health Stud; 1998; 34(4):371-80. PubMed ID: 10089594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impacts of the Fukushima nuclear power plants on marine radioactivity.
    Buesseler K; Aoyama M; Fukasawa M
    Environ Sci Technol; 2011 Dec; 45(23):9931-5. PubMed ID: 22013920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of a whole-lake addition of stable cesium on the remobilization of aged 137Cs in a contaminated reservoir.
    Pinder JE; Hinton TG; Whicker FW
    J Environ Radioact; 2005; 80(2):225-43. PubMed ID: 15701385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiocesium reaction with illite and organic matter in marine sediment.
    Kim Y; Cho S; Kang HD; Kim W; Lee HR; Doh SH; Kim K; Yun SG; Kim DS; Jeong GY
    Mar Pollut Bull; 2006 Jun; 52(6):659-65. PubMed ID: 16324722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the adsorptive behavior of cesium and strontium on hydroxyapatite and zeolite for decontamination of radioactive substances.
    Ozeki K; Aoki H
    Biomed Mater Eng; 2016 Aug; 27(2-3):227-36. PubMed ID: 27567777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Prussian blue nanoparticles for the radioactive Cs decontamination in Fukushima region.
    Parajuli D; Kitajima A; Takahashi A; Tanaka H; Ogawa H; Hakuta Y; Yoshino K; Funahashi T; Yamaguchi M; Osada M; Kawamoto T
    J Environ Radioact; 2016 Jan; 151 Pt 1():233-237. PubMed ID: 26520683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption models of 137Cs radionuclide and Sr (II) on some Egyptian soils.
    Kamel NH
    J Environ Radioact; 2010 Apr; 101(4):297-303. PubMed ID: 20167404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequestering uranium and technetium through co-precipitation with aluminum in a contaminated acidic environment.
    Luo W; Kelly SD; Kemner KM; Watson D; Zhou J; Jardine PM; Gu B
    Environ Sci Technol; 2009 Oct; 43(19):7516-22. PubMed ID: 19848170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobility of radionuclides in soil/groundwater system: comparing the influence of EDTA and four of its degradation products.
    Seliman AF; Borai EH; Lasheen YF; Abo-Aly MM; DeVol TA; Powell BA
    Environ Pollut; 2010 Oct; 158(10):3077-84. PubMed ID: 20656386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mobilization of technetium from reduced sediments under seawater inundation and intrusion scenarios.
    Eagling J; Worsfold PJ; Blake WH; Keith-Roach MJ
    Environ Sci Technol; 2012 Nov; 46(21):11798-803. PubMed ID: 23050555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The accumulation of radiocesium in coarse marine sediment: effects of mineralogy and organic matter.
    Kim Y; Kim K; Kang HD; Kim W; Doh SH; Kim DS; Kim BK
    Mar Pollut Bull; 2007 Sep; 54(9):1341-50. PubMed ID: 17663995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of gravel size fraction on the distribution coefficients of selected radionuclides.
    Um W; Serne RJ; Last GV; Clayton RE; Glossbrenner ET
    J Contam Hydrol; 2009 Jun; 107(1-2):82-90. PubMed ID: 19442406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decontamination of seawater from
    Voronina AV; Noskova AY; Semenishchev VS; Gupta DK
    J Environ Radioact; 2020 Jun; 217():106210. PubMed ID: 32217243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.