These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24905193)

  • 1. A pattern-mixture model with nonfuture dependence and shift in current missing values.
    Lu K; Chen C; Li D
    J Biopharm Stat; 2015; 25(3):548-69. PubMed ID: 24905193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytic method for the placebo-based pattern-mixture model.
    Lu K
    Stat Med; 2014 Mar; 33(7):1134-45. PubMed ID: 24122822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation-based study comparing multiple imputation methods for non-monotone missing ordinal data in longitudinal settings.
    Donneau AF; Mauer M; Lambert P; Molenberghs G; Albert A
    J Biopharm Stat; 2015; 25(3):570-601. PubMed ID: 24905056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials.
    Mallinckrodt CH; Lin Q; Molenberghs M
    Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the random-effects pattern mixture model with last-observation-carried-forward (LOCF) analysis in longitudinal clinical trials with dropouts.
    Siddiqui O; Ali MW
    J Biopharm Stat; 1998 Nov; 8(4):545-63. PubMed ID: 9855033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled pattern imputation for sensitivity analysis of longitudinal binary and ordinal outcomes with nonignorable dropout.
    Tang Y
    Stat Med; 2018 Apr; 37(9):1467-1481. PubMed ID: 29333672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of pattern-mixture models in randomized clinical trials.
    Bunouf P; Molenberghs G
    Pharm Stat; 2016 Nov; 15(6):494-506. PubMed ID: 27658505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pattern-mixture model approach for handling missing continuous outcome data in longitudinal cluster randomized trials.
    Fiero MH; Hsu CH; Bell ML
    Stat Med; 2017 Nov; 36(26):4094-4105. PubMed ID: 28783884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity analysis for pattern mixture models.
    Curran D; Molenberghs G; Thijs H; Verbeke G
    J Biopharm Stat; 2004 Feb; 14(1):125-43. PubMed ID: 15027504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the effect of multiple imputation on incomplete longitudinal data with application to a randomized clinical study.
    Fong DY; Rai SN; Lam KS
    J Biopharm Stat; 2013; 23(5):1004-22. PubMed ID: 23957512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment effects in randomized longitudinal trials with different types of nonignorable dropout.
    Yang M; Maxwell SE
    Psychol Methods; 2014 Jun; 19(2):188-210. PubMed ID: 24079928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the multiple imputation variance estimator for control-based and delta-adjusted pattern mixture models.
    Tang Y
    Biometrics; 2017 Dec; 73(4):1379-1387. PubMed ID: 28407203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial.
    Muthén B; Asparouhov T; Hunter AM; Leuchter AF
    Psychol Methods; 2011 Mar; 16(1):17-33. PubMed ID: 21381817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple imputation under Bayesianly smoothed pattern-mixture models for non-ignorable drop-out.
    Demirtas H
    Stat Med; 2005 Aug; 24(15):2345-63. PubMed ID: 15977286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bias and Precision of the "Multiple Imputation, Then Deletion" Method for Dealing With Missing Outcome Data.
    Sullivan TR; Salter AB; Ryan P; Lee KJ
    Am J Epidemiol; 2015 Sep; 182(6):528-34. PubMed ID: 26337075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity analyses in longitudinal clinical trials via distributional imputation.
    Liu S; Yang S; Zhang Y; Liu GF
    Stat Methods Med Res; 2023 Jan; 32(1):181-194. PubMed ID: 36341772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imputation strategies for missing continuous outcomes in cluster randomized trials.
    Taljaard M; Donner A; Klar N
    Biom J; 2008 Jun; 50(3):329-45. PubMed ID: 18537126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric models for incomplete continuous and categorical longitudinal data.
    Kenward MG; Molenberghs G
    Stat Methods Med Res; 1999 Mar; 8(1):51-83. PubMed ID: 10347860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of data analysis strategies for intent-to-treat analysis in pre-test-post-test designs with substantial dropout rates.
    Salim A; Mackinnon A; Christensen H; Griffiths K
    Psychiatry Res; 2008 Sep; 160(3):335-45. PubMed ID: 18718673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of dropouts on the analysis of dose-finding studies with recurrent event data.
    Akacha M; Benda N
    Stat Med; 2010 Jul; 29(15):1635-46. PubMed ID: 20552569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.