BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 24905257)

  • 1. Wetlands as long-term sources of metals to receiving waters in mining-impacted landscapes.
    Szkokan-Emilson EJ; Watmough SA; Gunn JM
    Environ Pollut; 2014 Sep; 192():91-103. PubMed ID: 24905257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mining legacy across a wetland landscape: high mercury in Upper Peninsula (Michigan) rivers, lakes, and fish.
    Kerfoot WC; Urban NR; McDonald CP; Zhang H; Rossmann R; Perlinger JA; Khan T; Hendricks A; Priyadarshini M; Bolstad M
    Environ Sci Process Impacts; 2018 Apr; 20(4):708-733. PubMed ID: 29595202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Saturation of ecosystems with toxic metals in Sudbury basin, Ontario, Canada.
    Nriagu JO; Wong HK; Lawson G; Daniel P
    Sci Total Environ; 1998 Nov; 223(2-3):99-117. PubMed ID: 9861730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased acid deposition and the chemical recovery of Killarney, Ontario, lakes.
    Keller W; Heneberry JH; Dixit SS
    Ambio; 2003 Apr; 32(3):183-9. PubMed ID: 12839193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecological risk assessment of boreal sediments affected by metal mining: Metal geochemistry, seasonality, and comparison of several risk assessment methods.
    Väänänen K; Kauppila T; Mäkinen J; Leppänen MT; Lyytikäinen M; Akkanen J
    Integr Environ Assess Manag; 2016 Oct; 12(4):759-71. PubMed ID: 26695003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increases in terrestrially derived carbon stimulate organic carbon processing and CO₂ emissions in boreal aquatic ecosystems.
    Lapierre JF; Guillemette F; Berggren M; del Giorgio PA
    Nat Commun; 2013; 4():2972. PubMed ID: 24336188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcatchment deltas and upland features influence multiscale aquatic ecosystem recovery in damaged landscapes.
    Kielstra BW; Arnott SE; Gunn JM
    Ecol Appl; 2017 Dec; 27(8):2249-2261. PubMed ID: 28782919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylmercury production in a chronically sulfate-impacted sub-boreal wetland.
    Johnson NW; Mitchell CP; Engstrom DR; Bailey LT; Coleman Wasik JK; Berndt ME
    Environ Sci Process Impacts; 2016 Jun; 18(6):725-34. PubMed ID: 27224550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing diatom-based inference models to assess lake ecosystem change along a gradient of metal smelting impacts: Sudbury lakes revisited.
    Cheng Y; Michelutti N; Paterson AM; Meyer-Jacob C; Smol JP
    J Phycol; 2022 Aug; 58(4):530-542. PubMed ID: 35578796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methylmercury and dissolved organic carbon relationships in a wetland-rich watershed impacted by elevated sulfate from mining.
    Berndt ME; Bavin TK
    Environ Pollut; 2012 Feb; 161():321-7. PubMed ID: 21705118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].
    Jian MF; Li LY; Xu PF; Chen PQ; Xiong JQ; Zhou XL
    Huan Jing Ke Xue; 2014 May; 35(5):1759-65. PubMed ID: 25055663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of regional reductions in sulphur deposition on the chemical and biological recovery of lakes within Killarney Park, Ontario, Canada.
    Snucins E; Gunn J; Keller B; Dixit S; Hindar A; Henriksen A
    Environ Monit Assess; 2001; 67(1-2):179-94. PubMed ID: 11339698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the role of water chemistry on metal accumulation in biofilms from streams in mining areas.
    Laderriere V; Le Faucheur S; Fortin C
    Sci Total Environ; 2021 Aug; 784():146986. PubMed ID: 33894602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geologic processes influence the effects of mining on aquatic ecosystems.
    Schmidt TS; Clements WH; Wanty RB; Verplanck PL; Church SE; San Juan CA; Fey DL; Rockwell BW; DeWitt EH; Klein TL
    Ecol Appl; 2012 Apr; 22(3):870-9. PubMed ID: 22645817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-browning of Sudbury (Ontario, Canada) lakes now approaches pre-acid deposition lake-water dissolved organic carbon levels.
    Meyer-Jacob C; Labaj AL; Paterson AM; Edwards BA; Keller WB; Cumming BF; Smol JP
    Sci Total Environ; 2020 Jul; 725():138347. PubMed ID: 32304963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring the results of Canada/U.S.A. acid rain control programs: some lake responses.
    Jeffries DS; Brydges TG; Dillon PJ; Keller W
    Environ Monit Assess; 2003; 88(1-3):3-19. PubMed ID: 14570408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluvial mercury budget for Lake Ontario.
    Denkenberger JS; Driscoll CT; Mason E; Branfireun B; Warnock A
    Environ Sci Technol; 2014 Jun; 48(11):6107-14. PubMed ID: 24783951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluvial-controlled metal and As mobilisation, dispersal and storage in the Río Guadiamar, SW Spain and its implications for long-term contaminant fluxes to the Doñana wetlands.
    Turner JN; Brewer PA; Macklin MG
    Sci Total Environ; 2008 May; 394(1):144-61. PubMed ID: 18289642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH, ionic strength, dissolved organic carbon, time, and particle size on metals release from mine drainage impacted streambed sediments.
    Butler BA
    Water Res; 2009 Mar; 43(5):1392-402. PubMed ID: 19110291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview.
    Evans MS; Muir D; Lockhart WL; Stern G; Ryan M; Roach P
    Sci Total Environ; 2005 Dec; 351-352():94-147. PubMed ID: 16225909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.